These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
403 related articles for article (PubMed ID: 27925412)
1. In Situ Raman Spectroscopic Studies on Concentration of Electrolyte Salt in Lithium-Ion Batteries by Using Ultrafine Multifiber Probes. Yamanaka T; Nakagawa H; Tsubouchi S; Domi Y; Doi T; Abe T; Ogumi Z ChemSusChem; 2017 Mar; 10(5):855-861. PubMed ID: 27925412 [TBL] [Abstract][Full Text] [Related]
2. Mapping the anode surface-electrolyte interphase: investigating a life limiting process of lithium primary batteries. Bock DC; Tappero RV; Takeuchi KJ; Marschilok AC; Takeuchi ES ACS Appl Mater Interfaces; 2015 Mar; 7(9):5429-37. PubMed ID: 25690846 [TBL] [Abstract][Full Text] [Related]
3. Focused Ion Beam Fabrication of LiPON-based Solid-state Lithium-ion Nanobatteries for In Situ Testing. Lee JZ; Wynn TA; Meng YS; Santhanagopalan D J Vis Exp; 2018 Mar; (133):. PubMed ID: 29578496 [TBL] [Abstract][Full Text] [Related]
4. Single-ion polymer electrolyte membranes enable lithium-ion batteries with a broad operating temperature range. Cai W; Zhang Y; Li J; Sun Y; Cheng H ChemSusChem; 2014 Apr; 7(4):1063-7. PubMed ID: 24623577 [TBL] [Abstract][Full Text] [Related]
5. Transparent lithium-ion batteries. Yang Y; Jeong S; Hu L; Wu H; Lee SW; Cui Y Proc Natl Acad Sci U S A; 2011 Aug; 108(32):13013-8. PubMed ID: 21788483 [TBL] [Abstract][Full Text] [Related]
6. Modified coin cells for in situ Raman spectroelectrochemical measurements of Li(x)V2O5 for lithium rechargeable batteries. Burba CM; Frech R Appl Spectrosc; 2006 May; 60(5):490-3. PubMed ID: 16756699 [TBL] [Abstract][Full Text] [Related]
7. Boosting properties of 3D binder-free manganese oxide anodes by preformation of a solid electrolyte interphase. Zhou H; Wang X; Sheridan E; Chen D ChemSusChem; 2015 Apr; 8(8):1368-80. PubMed ID: 25760685 [TBL] [Abstract][Full Text] [Related]
8. Spatiotemporal changes of the solid electrolyte interphase in lithium-ion batteries detected by scanning electrochemical microscopy. Bülter H; Peters F; Schwenzel J; Wittstock G Angew Chem Int Ed Engl; 2014 Sep; 53(39):10531-5. PubMed ID: 25079515 [TBL] [Abstract][Full Text] [Related]
9. Direct visualization of solid electrolyte interphase formation in lithium-ion batteries with in situ electrochemical transmission electron microscopy. Unocic RR; Sun XG; Sacci RL; Adamczyk LA; Alsem DH; Dai S; Dudney NJ; More KL Microsc Microanal; 2014 Aug; 20(4):1029-37. PubMed ID: 24994021 [TBL] [Abstract][Full Text] [Related]
10. AlF3 surface-coated Li[Li0.2 Ni0.17 Co0.07 Mn0.56 ]O2 nanoparticles with superior electrochemical performance for lithium-ion batteries. Sun S; Yin Y; Wan N; Wu Q; Zhang X; Pan D; Bai Y; Lu X ChemSusChem; 2015 Aug; 8(15):2544-50. PubMed ID: 26105748 [TBL] [Abstract][Full Text] [Related]
11. Reaction between Lithium Anode and Polysulfide Ions in a Lithium-Sulfur Battery. Zheng D; Yang XQ; Qu D ChemSusChem; 2016 Sep; 9(17):2348-50. PubMed ID: 27535337 [TBL] [Abstract][Full Text] [Related]
12. Carbon Cathodes in Rechargeable Lithium-Oxygen Batteries Based on Double-Lithium-Salt Electrolytes. Yoo E; Zhou H ChemSusChem; 2016 Jun; 9(11):1249-54. PubMed ID: 27120298 [TBL] [Abstract][Full Text] [Related]
13. A rechargeable Li-O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte. Walker W; Giordani V; Uddin J; Bryantsev VS; Chase GV; Addison D J Am Chem Soc; 2013 Feb; 135(6):2076-9. PubMed ID: 23360567 [TBL] [Abstract][Full Text] [Related]
14. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices. Yao F; Pham DT; Lee YH ChemSusChem; 2015 Jul; 8(14):2284-311. PubMed ID: 26140707 [TBL] [Abstract][Full Text] [Related]
15. Facile Synthesis of Rod-like Cu Li H; Jiang J; Wang F; Huang J; Wang Y; Zhang Y; Zhao J ChemSusChem; 2017 May; 10(10):2235-2241. PubMed ID: 28383799 [TBL] [Abstract][Full Text] [Related]
16. Single nanowire electrode electrochemistry of silicon anode by in situ atomic force microscopy: solid electrolyte interphase growth and mechanical properties. Liu XR; Deng X; Liu RR; Yan HJ; Guo YG; Wang D; Wan LJ ACS Appl Mater Interfaces; 2014 Nov; 6(22):20317-23. PubMed ID: 25380518 [TBL] [Abstract][Full Text] [Related]
17. Dendrite Suppression by Synergistic Combination of Solid Polymer Electrolyte Crosslinked with Natural Terpenes and Lithium-Powder Anode for Lithium-Metal Batteries. Shim J; Lee JW; Bae KY; Kim HJ; Yoon WY; Lee JC ChemSusChem; 2017 May; 10(10):2274-2283. PubMed ID: 28374480 [TBL] [Abstract][Full Text] [Related]
18. Challenging the concept of electrochemical discharge using salt solutions for lithium-ion batteries recycling. Ojanen S; Lundström M; Santasalo-Aarnio A; Serna-Guerrero R Waste Manag; 2018 Jun; 76():242-249. PubMed ID: 29615279 [TBL] [Abstract][Full Text] [Related]
19. Carbon nanomaterials used as conductive additives in lithium ion batteries. Zhang Q; Yu Z; Du P; Su C Recent Pat Nanotechnol; 2010 Jun; 4(2):100-10. PubMed ID: 20415660 [TBL] [Abstract][Full Text] [Related]
20. Mechanism of Silicon Electrode Aging upon Cycling in Full Lithium-Ion Batteries. Delpuech N; Dupre N; Moreau P; Bridel JS; Gaubicher J; Lestriez B; Guyomard D ChemSusChem; 2016 Apr; 9(8):841-8. PubMed ID: 26915951 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]