BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

433 related articles for article (PubMed ID: 27925481)

  • 1. Mitochondrial ROS, uncoupled from ATP synthesis, determine endothelial activation for both physiological recruitment of patrolling cells and pathological recruitment of inflammatory cells.
    Li X; Fang P; Yang WY; Chan K; Lavallee M; Xu K; Gao T; Wang H; Yang X
    Can J Physiol Pharmacol; 2017 Mar; 95(3):247-252. PubMed ID: 27925481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial Reactive Oxygen Species Mediate Lysophosphatidylcholine-Induced Endothelial Cell Activation.
    Li X; Fang P; Li Y; Kuo YM; Andrews AJ; Nanayakkara G; Johnson C; Fu H; Shan H; Du F; Hoffman NE; Yu D; Eguchi S; Madesh M; Koch WJ; Sun J; Jiang X; Wang H; Yang X
    Arterioscler Thromb Vasc Biol; 2016 Jun; 36(6):1090-100. PubMed ID: 27127201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton leak regulates mitochondrial reactive oxygen species generation in endothelial cell activation and inflammation - A novel concept.
    Nanayakkara GK; Wang H; Yang X
    Arch Biochem Biophys; 2019 Feb; 662():68-74. PubMed ID: 30521782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial Proton Leak Plays a Critical Role in Pathogenesis of Cardiovascular Diseases.
    Cheng J; Nanayakkara G; Shao Y; Cueto R; Wang L; Yang WY; Tian Y; Wang H; Yang X
    Adv Exp Med Biol; 2017; 982():359-370. PubMed ID: 28551798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HSP22 suppresses diabetes-induced endothelial injury by inhibiting mitochondrial reactive oxygen species formation.
    Yu L; Liang Q; Zhang W; Liao M; Wen M; Zhan B; Bao H; Cheng X
    Redox Biol; 2019 Feb; 21():101095. PubMed ID: 30640127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resveratrol regulates mitochondrial reactive oxygen species homeostasis through Sirt3 signaling pathway in human vascular endothelial cells.
    Zhou X; Chen M; Zeng X; Yang J; Deng H; Yi L; Mi MT
    Cell Death Dis; 2014 Dec; 5(12):e1576. PubMed ID: 25522270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondria-meditated pathways of organ failure upon inflammation.
    Kozlov AV; Lancaster JR; Meszaros AT; Weidinger A
    Redox Biol; 2017 Oct; 13():170-181. PubMed ID: 28578275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Endothelial mitochondria--a novel target for pharmacology of endothelial dysfunction].
    Wrzosek A; Łojek A; Stanisławska I; Chmura-Skirlińska A; Dołowy K; Chłopicki S; Szewczyk A
    Postepy Biochem; 2008; 54(2):198-208. PubMed ID: 18807931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. P2Y
    Jin H; Ko YS; Park SW; Kim HJ
    Free Radic Biol Med; 2019 May; 136():109-117. PubMed ID: 30959169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vicious inducible nitric oxide synthase-mitochondrial reactive oxygen species cycle accelerates inflammatory response and causes liver injury in rats.
    Weidinger A; Müllebner A; Paier-Pourani J; Banerjee A; Miller I; Lauterböck L; Duvigneau JC; Skulachev VP; Redl H; Kozlov AV
    Antioxid Redox Signal; 2015 Mar; 22(7):572-86. PubMed ID: 25365698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers.
    Li X; Fang P; Mai J; Choi ET; Wang H; Yang XF
    J Hematol Oncol; 2013 Feb; 6():19. PubMed ID: 23442817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of mitochondrial ROS in the aging brain.
    Stefanatos R; Sanz A
    FEBS Lett; 2018 Mar; 592(5):743-758. PubMed ID: 29106705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial mechanisms of endothelial dysfunction.
    Szewczyk A; Jarmuszkiewicz W; Koziel A; Sobieraj I; Nobik W; Lukasiak A; Skup A; Bednarczyk P; Drabarek B; Dymkowska D; Wrzosek A; Zablocki K
    Pharmacol Rep; 2015 Aug; 67(4):704-10. PubMed ID: 26321271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Mitochondria in the Redox Signaling Network and Its Outcomes in High Impact Inflammatory Syndromes.
    Magnani ND; Marchini T; Calabró V; Alvarez S; Evelson P
    Front Endocrinol (Lausanne); 2020; 11():568305. PubMed ID: 33071976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Interplay Between Mitochondrial Reactive Oxygen Species, Endoplasmic Reticulum Stress, and Nrf2 Signaling in Cardiometabolic Health.
    Hartwick Bjorkman S; Oliveira Pereira R
    Antioxid Redox Signal; 2021 Aug; 35(4):252-269. PubMed ID: 33599550
    [No Abstract]   [Full Text] [Related]  

  • 16. Mitochondrial Reactive Oxygen Species: Double-Edged Weapon in Host Defense and Pathological Inflammation During Infection.
    Silwal P; Kim JK; Kim YJ; Jo EK
    Front Immunol; 2020; 11():1649. PubMed ID: 32922385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial reactive oxygen species and risk of atherosclerosis.
    Hulsmans M; Van Dooren E; Holvoet P
    Curr Atheroscler Rep; 2012 Jun; 14(3):264-76. PubMed ID: 22350585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chronic aerobic exercise training attenuates aortic stiffening and endothelial dysfunction through preserving aortic mitochondrial function in aged rats.
    Gu Q; Wang B; Zhang XF; Ma YP; Liu JD; Wang XZ
    Exp Gerontol; 2014 Aug; 56():37-44. PubMed ID: 24607516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases.
    Incalza MA; D'Oria R; Natalicchio A; Perrini S; Laviola L; Giorgino F
    Vascul Pharmacol; 2018 Jan; 100():1-19. PubMed ID: 28579545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of mitochondrial dysfunction in cardiovascular disease: a brief review.
    Chistiakov DA; Shkurat TP; Melnichenko AA; Grechko AV; Orekhov AN
    Ann Med; 2018 Mar; 50(2):121-127. PubMed ID: 29237304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.