These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 27925630)

  • 1. Interface stability, interface fluctuations, and the Gibbs-Thomson relationship in motility-induced phase separations.
    Lee CF
    Soft Matter; 2017 Jan; 13(2):376-385. PubMed ID: 27925630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Curvature-dependent tension and tangential flows at the interface of motility-induced phases.
    Patch A; Sussman DM; Yllanes D; Marchetti MC
    Soft Matter; 2018 Sep; 14(36):7435-7445. PubMed ID: 30152493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical Motility-Induced Phase Separation Belongs to the Ising Universality Class.
    Partridge B; Lee CF
    Phys Rev Lett; 2019 Aug; 123(6):068002. PubMed ID: 31491158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interparticle torques suppress motility-induced phase separation for rodlike particles.
    van Damme R; Rodenburg J; van Roij R; Dijkstra M
    J Chem Phys; 2019 Apr; 150(16):164501. PubMed ID: 31042908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ostwald ripening in multiple-bubble nuclei.
    Watanabe H; Suzuki M; Inaoka H; Ito N
    J Chem Phys; 2014 Dec; 141(23):234703. PubMed ID: 25527953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic structure perspective for MIPS interfaces in two-dimensional systems of active Brownian particles.
    Chacón E; Alarcón F; Ramírez J; Tarazona P; Valeriani C
    Soft Matter; 2022 Mar; 18(13):2646-2653. PubMed ID: 35302119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motility-Induced Microphase and Macrophase Separation in a Two-Dimensional Active Brownian Particle System.
    Caporusso CB; Digregorio P; Levis D; Cugliandolo LF; Gonnella G
    Phys Rev Lett; 2020 Oct; 125(17):178004. PubMed ID: 33156654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interface-Induced Coarsening Process in Polymer Blends.
    Xie XM; Kong XM; Xiao TJ; Yang Y; Gao N; Tanioka A
    J Colloid Interface Sci; 2001 Feb; 234(1):24-27. PubMed ID: 11161486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic bubble coarsening in off-critical vapor-liquid phase separation.
    Warren PB
    Phys Rev Lett; 2001 Nov; 87(22):225702. PubMed ID: 11736409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Gibbs equation versus the Kelvin and the Gibbs-Thomson equations to describe nucleation and equilibrium of nano-materials.
    Kaptay G
    J Nanosci Nanotechnol; 2012 Mar; 12(3):2625-33. PubMed ID: 22755100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coarsening and pattern formation during true morphological phase separation in unstable thin films under gravity.
    Kumar A; Narayanam C; Khanna R; Puri S
    Phys Rev E; 2017 Dec; 96(6-1):062804. PubMed ID: 29347354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous Velocity Alignment in Motility-Induced Phase Separation.
    Caprini L; Marini Bettolo Marconi U; Puglisi A
    Phys Rev Lett; 2020 Feb; 124(7):078001. PubMed ID: 32142346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aggregation according to classical kinetics: from nucleation to coarsening.
    Farjoun Y; Neu JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051607. PubMed ID: 21728547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motility-induced phase separation of self-propelled soft inertial disks.
    De Karmakar S; Ganesh R
    Soft Matter; 2022 Oct; 18(38):7301-7308. PubMed ID: 36106916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active Brownian equation of state: metastability and phase coexistence.
    Levis D; Codina J; Pagonabarraga I
    Soft Matter; 2017 Nov; 13(44):8113-8119. PubMed ID: 29105717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coarsening of metal oxide nanoparticles.
    Oskam G; Hu Z; Penn RL; Pesika N; Searson PC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 1):011403. PubMed ID: 12241360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of bending rigidity and interfacial permeability on the dynamical behavior of water-in-water emulsions.
    Scholten E; Sagis LM; van der Linden E
    J Phys Chem B; 2006 Feb; 110(7):3250-6. PubMed ID: 16494336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A kinetic-Monte Carlo perspective on active matter.
    Klamser JU; Kapfer SC; Krauth W
    J Chem Phys; 2019 Apr; 150(14):144113. PubMed ID: 30981254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Grand Canonical Monte Carlo Simulations to Understand the Role of Interfacial Fluctuations on Solvation at the Water-Vapor Interface.
    Rane K; van der Vegt NF
    J Phys Chem B; 2016 Sep; 120(36):9697-707. PubMed ID: 27532321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface thermodynamics at the nanoscale.
    Elliott JAW
    J Chem Phys; 2021 May; 154(19):190901. PubMed ID: 34240888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.