These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 27926475)

  • 21. Cellular and molecular engineering of yeast Saccharomyces cerevisiae for advanced biobutanol production.
    Kuroda K; Ueda M
    FEMS Microbiol Lett; 2016 Feb; 363(3):. PubMed ID: 26712533
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Synthetic Microbiology Caucus: a fresh channel for exploring new ideas, challenging conventional wisdom and fostering community projects.
    de Lorenzo V; Marliére P
    Microb Biotechnol; 2019 Jan; 12(1):3-4. PubMed ID: 30358107
    [No Abstract]   [Full Text] [Related]  

  • 23. From the first drop to the first truckload: commercialization of microbial processes for renewable chemicals.
    Van Dien S
    Curr Opin Biotechnol; 2013 Dec; 24(6):1061-8. PubMed ID: 23537815
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Developing synthetic hybrid promoters to increase constitutive or diauxic shift-induced expression in Saccharomyces cerevisiae.
    Wang J; Zhai H; Rexida R; Shen Y; Hou J; Bao X
    FEMS Yeast Res; 2018 Dec; 18(8):. PubMed ID: 30203049
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Production of plant-derived natural products in yeast cells - A review].
    Wang D; Dai Z; Zhang X
    Wei Sheng Wu Xue Bao; 2016 Mar; 56(3):516-29. PubMed ID: 27382793
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthetic biology for microbial production of lipid-based biofuels.
    d'Espaux L; Mendez-Perez D; Li R; Keasling JD
    Curr Opin Chem Biol; 2015 Dec; 29():58-65. PubMed ID: 26479184
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals.
    Jullesson D; David F; Pfleger B; Nielsen J
    Biotechnol Adv; 2015 Nov; 33(7):1395-402. PubMed ID: 25728067
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Standardization of Synthetic Biology Tools and Assembly Methods for
    Malcı K; Watts E; Roberts TM; Auxillos JY; Nowrouzi B; Boll HO; Nascimento CZSD; Andreou A; Vegh P; Donovan S; Fragkoudis R; Panke S; Wallace E; Elfick A; Rios-Solis L
    ACS Synth Biol; 2022 Aug; 11(8):2527-2547. PubMed ID: 35939789
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reversal of the β-oxidation cycle in Saccharomyces cerevisiae for production of fuels and chemicals.
    Lian J; Zhao H
    ACS Synth Biol; 2015 Mar; 4(3):332-41. PubMed ID: 24959659
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Synthetic Microbiology Caucus: from abstract ideas to turning microbes into cellular machines and back.
    Huang WE; Nikel PI
    Microb Biotechnol; 2019 Jan; 12(1):5-7. PubMed ID: 30461208
    [No Abstract]   [Full Text] [Related]  

  • 31. Pathway swapping: Toward modular engineering of essential cellular processes.
    Kuijpers NG; Solis-Escalante D; Luttik MA; Bisschops MM; Boonekamp FJ; van den Broek M; Pronk JT; Daran JM; Daran-Lapujade P
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):15060-15065. PubMed ID: 27956602
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Industrial systems biology and its impact on synthetic biology of yeast cell factories.
    Fletcher E; Krivoruchko A; Nielsen J
    Biotechnol Bioeng; 2016 Jun; 113(6):1164-70. PubMed ID: 26524089
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Breaking the state-of-the-art in the chemical industry with new-to-Nature products via synthetic microbiology.
    Martinelli L; Nikel PI
    Microb Biotechnol; 2019 Mar; 12(2):187-190. PubMed ID: 30706666
    [No Abstract]   [Full Text] [Related]  

  • 34. Solving yeast jigsaw puzzles over a glass of wine: Synthetic genome engineering pioneers new possibilities for wine yeast research.
    Pretorius IS
    EMBO Rep; 2017 Nov; 18(11):1875-1884. PubMed ID: 29061873
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthetic biology: emerging methodologies to catalyze the metabolic engineering design cycle.
    Smolke CD; Tyo KE
    Metab Eng; 2012 May; 14(3):187-8. PubMed ID: 22465683
    [No Abstract]   [Full Text] [Related]  

  • 36. Towards the Microbial Production of Plant-Derived Anticancer Drugs.
    Courdavault V; O'Connor SE; Oudin A; Besseau S; Papon N
    Trends Cancer; 2020 Jun; 6(6):444-448. PubMed ID: 32459998
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coping with complexity in metabolic engineering.
    Mampel J; Buescher JM; Meurer G; Eck J
    Trends Biotechnol; 2013 Jan; 31(1):52-60. PubMed ID: 23183303
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reprogramming Halomonas for industrial production of chemicals.
    Chen X; Yu L; Qiao G; Chen GQ
    J Ind Microbiol Biotechnol; 2018 Jul; 45(7):545-554. PubMed ID: 29948194
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthetic biology strategies for microbial biosynthesis of plant natural products.
    Cravens A; Payne J; Smolke CD
    Nat Commun; 2019 May; 10(1):2142. PubMed ID: 31086174
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MESSI: metabolic engineering target selection and best strain identification tool.
    Kang K; Li J; Lim BL; Panagiotou G
    Database (Oxford); 2015; 2015():. PubMed ID: 26255308
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.