BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 27926843)

  • 1. Membrane Anchoring and Ion-Entry Dynamics in P-type ATPase Copper Transport.
    Grønberg C; Sitsel O; Lindahl E; Gourdon P; Andersson M
    Biophys J; 2016 Dec; 111(11):2417-2429. PubMed ID: 27926843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A sulfur-based transport pathway in Cu+-ATPases.
    Mattle D; Zhang L; Sitsel O; Pedersen LT; Moncelli MR; Tadini-Buoninsegni F; Gourdon P; Rees DC; Nissen P; Meloni G
    EMBO Rep; 2015 Jun; 16(6):728-40. PubMed ID: 25956886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper-transporting P-type ATPases use a unique ion-release pathway.
    Andersson M; Mattle D; Sitsel O; Klymchuk T; Nielsen AM; Møller LB; White SH; Nissen P; Gourdon P
    Nat Struct Mol Biol; 2014 Jan; 21(1):43-8. PubMed ID: 24317491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional characterization of Legionella pneumophila Cu
    Placenti MA; Roman EA; González Flecha FL; González-Lebrero RM
    Biochim Biophys Acta Biomembr; 2022 Feb; 1864(2):183822. PubMed ID: 34826402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanism of Cu+ transport ATPases: interaction with CU+ chaperones and the role of transient metal-binding sites.
    Padilla-Benavides T; McCann CJ; Argüello JM
    J Biol Chem; 2013 Jan; 288(1):69-78. PubMed ID: 23184962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On allosteric modulation of P-type Cu(+)-ATPases.
    Mattle D; Sitsel O; Autzen HE; Meloni G; Gourdon P; Nissen P
    J Mol Biol; 2013 Jul; 425(13):2299-308. PubMed ID: 23500486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of a copper-transporting PIB-type ATPase.
    Gourdon P; Liu XY; Skjørringe T; Morth JP; Møller LB; Pedersen BP; Nissen P
    Nature; 2011 Jun; 475(7354):59-64. PubMed ID: 21716286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis of ion uptake in copper-transporting P
    Salustros N; Grønberg C; Abeyrathna NS; Lyu P; Orädd F; Wang K; Andersson M; Meloni G; Gourdon P
    Nat Commun; 2022 Aug; 13(1):5121. PubMed ID: 36045128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical characterization of CopA, the Escherichia coli Cu(I)-translocating P-type ATPase.
    Fan B; Rosen BP
    J Biol Chem; 2002 Dec; 277(49):46987-92. PubMed ID: 12351646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper transport and its defect in Wilson disease: characterization of the copper-binding domain of Wilson disease ATPase.
    Sarkar B
    J Inorg Biochem; 2000 Apr; 79(1-4):187-91. PubMed ID: 10830865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation and Functional Role of the Orientations of the N- and P-Domains of Cu+ -Transporting ATPase along the Ion Transport Cycle.
    Meng D; Bruschweiler-Li L; Zhang F; Brüschweiler R
    Biochemistry; 2015 Aug; 54(32):5095-102. PubMed ID: 26196187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of the transmembrane metal binding site in Cu+-transporting PIB-type ATPases.
    Mandal AK; Yang Y; Kertesz TM; Argüello JM
    J Biol Chem; 2004 Dec; 279(52):54802-7. PubMed ID: 15494391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the ATP binding domain from the Archaeoglobus fulgidus Cu+-ATPase.
    Sazinsky MH; Mandal AK; Argüello JM; Rosenzweig AC
    J Biol Chem; 2006 Apr; 281(16):11161-6. PubMed ID: 16495228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of ATPase-mediated Cu+ export and delivery to periplasmic chaperones: the interaction of Escherichia coli CopA and CusF.
    Padilla-Benavides T; George Thompson AM; McEvoy MM; Argüello JM
    J Biol Chem; 2014 Jul; 289(30):20492-501. PubMed ID: 24917681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites.
    González-Guerrero M; Argüello JM
    Proc Natl Acad Sci U S A; 2008 Apr; 105(16):5992-7. PubMed ID: 18417453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chaperone-mediated Cu+ delivery to Cu+ transport ATPases: requirement of nucleotide binding.
    González-Guerrero M; Hong D; Argüello JM
    J Biol Chem; 2009 Jul; 284(31):20804-11. PubMed ID: 19525226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transmembrane type-2-like Cu2+ site in the P1B-3-type ATPase CopB: implications for metal selectivity.
    Meloni G; Zhang L; Rees DC
    ACS Chem Biol; 2014 Jan; 9(1):116-21. PubMed ID: 24144006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward a molecular understanding of metal transport by P(1B)-type ATPases.
    Rosenzweig AC; Argüello JM
    Curr Top Membr; 2012; 69():113-36. PubMed ID: 23046649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical basis of regulation of human copper-transporting ATPases.
    Lutsenko S; LeShane ES; Shinde U
    Arch Biochem Biophys; 2007 Jul; 463(2):134-48. PubMed ID: 17562324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics and stability of the metal binding domains of the Menkes ATPase and their interaction with metallochaperone HAH1.
    Arumugam K; Crouzy S
    Biochemistry; 2012 Nov; 51(44):8885-906. PubMed ID: 23075277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.