BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 27926882)

  • 1. Effect of reduced humic acid on the transport of ferrihydrite nanoparticles under anoxic conditions.
    Liao P; Li W; Wang D; Jiang Y; Pan C; Fortner JD; Yuan S
    Water Res; 2017 Feb; 109():347-357. PubMed ID: 27926882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced NOM triggered rapid Cr(VI) reduction and formation of NOM-Cr(III) colloids in anoxic environments.
    Li B; Liao P; Xie L; Li Q; Pan C; Ning Z; Liu C
    Water Res; 2020 Aug; 181():115923. PubMed ID: 32422451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Redox Reactions on Colloid Transport in Saturated Porous Media: An Example of Ferrihydrite Colloids Transport in the Presence of Sulfide.
    Liao P; Yuan S; Wang D
    Environ Sci Technol; 2016 Oct; 50(20):10968-10977. PubMed ID: 27654458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic effects of phosphorus and humic acid on the transport of anatase titanium dioxide nanoparticles in water-saturated porous media.
    Chen M; Xu N; Christodoulatos C; Wang D
    Environ Pollut; 2018 Dec; 243(Pt B):1368-1375. PubMed ID: 30273863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antagonistic effects of humic acid and iron oxyhydroxide grain-coating on biochar nanoparticle transport in saturated sand.
    Wang D; Zhang W; Zhou D
    Environ Sci Technol; 2013 May; 47(10):5154-61. PubMed ID: 23614641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct effects of humic acid on transport and retention of TiO2 rutile nanoparticles in saturated sand columns.
    Chen G; Liu X; Su C
    Environ Sci Technol; 2012 Jul; 46(13):7142-50. PubMed ID: 22681399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths.
    Zhu M; Wang H; Keller AA; Wang T; Li F
    Sci Total Environ; 2014 Jul; 487():375-80. PubMed ID: 24793841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined effects of ferrihydrite coating and ionic type on the transport of compost-derived dissolved organic matter in saturated porous media.
    Miao C; Zhou H; Lv Y; Shang J; Mamut A
    Environ Pollut; 2022 Aug; 307():119501. PubMed ID: 35636713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of natural organic matter on the transport and deposition of zinc oxide nanoparticles in saturated porous media.
    Jiang X; Tong M; Kim H
    J Colloid Interface Sci; 2012 Nov; 386(1):34-43. PubMed ID: 22840876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Humic acid induced weak attachment of fullerene nC
    Wang Z; Li T; Shen C; Shang J; Shi K; Zhang Y; Li B
    J Contam Hydrol; 2020 May; 231():103630. PubMed ID: 32169749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport and retention of copper oxide nanoparticles under unfavorable deposition conditions caused by repulsive van der Waals force in saturated porous media.
    Wu H; Fang H; Xu C; Ye J; Cai Q; Shi J
    Environ Pollut; 2020 Jan; 256():113400. PubMed ID: 31662262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand.
    Wang D; Bradford SA; Harvey RW; Gao B; Cang L; Zhou D
    Environ Sci Technol; 2012 Mar; 46(5):2738-45. PubMed ID: 22316080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of myo-inositol hexakisphosphate, ferrihydrite coating, ionic strength and pH on the transport of TiO
    Tang Y; Wang X; Yan Y; Zeng H; Wang G; Tan W; Liu F; Feng X
    Environ Pollut; 2019 Sep; 252(Pt B):1193-1201. PubMed ID: 31252117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cotransport of hydroxyapatite nanoparticles and hematite colloids in saturated porous media: Mechanistic insights from mathematical modeling and phosphate oxygen isotope fractionation.
    Wang D; Jin Y; Jaisi DP
    J Contam Hydrol; 2015 Nov; 182():194-209. PubMed ID: 26409895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Humic acid-mediated transport of tetracycline and pyrene in saturated porous media.
    Zhang L; Zhu D; Wang H; Hou L; Chen W
    Environ Toxicol Chem; 2012 Mar; 31(3):534-41. PubMed ID: 22189631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of humic acid source on humic acid adsorption onto titanium dioxide nanoparticles.
    Erhayem M; Sohn M
    Sci Total Environ; 2014 Feb; 470-471():92-8. PubMed ID: 24140685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct effect of humic acid on ferrihydrite colloid-facilitated transport of arsenic in saturated media at different pH.
    Ma J; Guo H; Weng L; Li Y; Lei M; Chen Y
    Chemosphere; 2018 Dec; 212():794-801. PubMed ID: 30189406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of sunlight and humic acid on the deposition kinetics of aqueous fullerene nanoparticles (nC60).
    Qu X; Alvarez PJ; Li Q
    Environ Sci Technol; 2012 Dec; 46(24):13455-62. PubMed ID: 23157776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural Organic Matter (NOM) Imparts Molecular-Weight-Dependent Steric Stabilization or Electrostatic Destabilization to Ferrihydrite Nanoparticles.
    Li Z; Shakiba S; Deng N; Chen J; Louie SM; Hu Y
    Environ Sci Technol; 2020 Jun; 54(11):6761-6770. PubMed ID: 32250111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-transport of U(VI), humic acid and colloidal gibbsite in water-saturated porous media.
    Yang J; Ge M; Jin Q; Chen Z; Guo Z
    Chemosphere; 2019 Sep; 231():405-414. PubMed ID: 31146132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.