These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 27927281)

  • 1. Iron [Fe(0)]-rich substrate based on iron-carbon micro-electrolysis for phosphorus adsorption in aqueous solutions.
    Deng S; Li D; Yang X; Xing W; Li J; Zhang Q
    Chemosphere; 2017 Feb; 168():1486-1493. PubMed ID: 27927281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of 3,3'-iminobis-propanenitrile in aqueous solution by Fe(0)/GAC micro-electrolysis system.
    Lai B; Zhou Y; Yang P; Yang J; Wang J
    Chemosphere; 2013 Jan; 90(4):1470-7. PubMed ID: 23036321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of phosphorus sorption onto light expanded clay aggregates by means of aluminum and iron oxide coatings.
    Yaghi N; Hartikainen H
    Chemosphere; 2013 Nov; 93(9):1879-86. PubMed ID: 23866174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of iron [Fe(0)]-rich substrate as a novel capping material for efficient simultaneous remediation of contaminated sediments and the overlying water body.
    Hu Z; Deng S; Li D; Guan D; Xie B; Zhang C; Li P; Yao H
    Sci Total Environ; 2020 Dec; 748():141596. PubMed ID: 32818887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of the addition of iron and aluminum salt on phosphorus adsorption in wetland sediment.
    Huang S; Huang H; Zhu H
    Environ Sci Pollut Res Int; 2016 May; 23(10):10022-7. PubMed ID: 26865486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the phosphorus sorption capacity of substrates used in constructed wetland systems.
    Xu D; Xu J; Wu J; Muhammad A
    Chemosphere; 2006 Apr; 63(2):344-52. PubMed ID: 16242173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorus losses from agricultural land to natural waters are reduced by immobilization in iron-rich sediments of drainage ditches.
    Baken S; Verbeeck M; Verheyen D; Diels J; Smolders E
    Water Res; 2015 Mar; 71():160-70. PubMed ID: 25616116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pretreatment of landfill leachate in near-neutral pH condition by persulfate activated Fe-C micro-electrolysis system.
    Zhang W; Li X; Yang Q; Wang D; Wu Y; Zhu X; Wei J; Liu Y; Hou L; Chen C
    Chemosphere; 2019 Feb; 216():749-756. PubMed ID: 30391897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination with catalyzed Fe(0)-carbon microelectrolysis and activated carbon adsorption for advanced reclaimed water treatment: simultaneous nitrate and biorefractory organics removal.
    Hu Z; Li D; Deng S; Liu Y; Ma C; Zhang C
    Environ Sci Pollut Res Int; 2019 Feb; 26(6):5693-5703. PubMed ID: 30612352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of organic matter on phosphorus removal for substrate in constructed wetland].
    Li JB; Wen Y; Zhao XJ; Zhou Q; Jiang ZG; Zhang Q
    Huan Jing Ke Xue; 2008 Jul; 29(7):1880-3. PubMed ID: 18828370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron scraps enhance simultaneous nitrogen and phosphorus removal in subsurface flow constructed wetlands.
    Ma Y; Dai W; Zheng P; Zheng X; He S; Zhao M
    J Hazard Mater; 2020 Aug; 395():122612. PubMed ID: 32361175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Analysis on the removal efficiency of phosphorus in some substrates used in constructed wetland systems].
    Yuan DH; Jing LJ; Gao SX; Yin DQ; Wang LS
    Huan Jing Ke Xue; 2005 Jan; 26(1):51-5. PubMed ID: 15859408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced nitrogen removal via iron‑carbon micro-electrolysis in surface flow constructed wetlands: Selecting activated carbon or biochar?
    Cui X; Zhang M; Ding Y; Sun S; He S; Yan P
    Sci Total Environ; 2022 Apr; 815():152800. PubMed ID: 34982986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Underestimation of phosphorus fraction change in the supernatant after phosphorus adsorption onto iron oxides and iron oxide-natural organic matter complexes.
    Yan J; Jiang T; Yao Y; Wang J; Cai Y; Green NW; Wei S
    J Environ Sci (China); 2017 May; 55():197-205. PubMed ID: 28477813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic adsorption of phosphorus by iron in lanthanum modified bentonite (Phoslock
    Ding S; Sun Q; Chen X; Liu Q; Wang D; Lin J; Zhang C; Tsang DCW
    Water Res; 2018 May; 134():32-43. PubMed ID: 29407649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphonate removal from discharged circulating cooling water using iron-carbon micro-electrolysis.
    Zhou Z; Qiao W; Lin Y; Shen X; Hu D; Zhang J; Jiang LM; Wang L
    Water Sci Technol; 2014; 70(3):524-32. PubMed ID: 25098884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of enhanced nitrate reduction via micro-electrolysis at the powdered zero-valent iron/activated carbon interface.
    Luo J; Song G; Liu J; Qian G; Xu ZP
    J Colloid Interface Sci; 2014 Dec; 435():21-5. PubMed ID: 25217726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on Fe-C-Al three-phase micro-electrolysis treatment of low concentration phosphorus wastewater.
    Hu B; Qi Q; Li L; Huan Y; Liu Z; Liu X
    Water Sci Technol; 2022 Nov; 86(10):2581-2592. PubMed ID: 36450674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery of phosphate and dissolved organic matter from aqueous solution using a novel CaO-MgO hybrid carbon composite and its feasibility in phosphorus recycling.
    Li R; Wang JJ; Zhang Z; Awasthi MK; Du D; Dang P; Huang Q; Zhang Y; Wang L
    Sci Total Environ; 2018 Nov; 642():526-536. PubMed ID: 29908511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutrient and dissolved organic carbon removal from natural waters using industrial by-products.
    Wendling LA; Douglas GB; Coleman S; Yuan Z
    Sci Total Environ; 2013 Jan; 442():63-72. PubMed ID: 23178765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.