BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 27927311)

  • 1. Cobalt Chrome Spinal Constructs Trigger Airport Security Screening in 24% of Pediatric Patients.
    Woon RP; Andras LM; Barrett KK; Skaggs DL
    Spine Deform; 2015 Mar; 3(2):188-191. PubMed ID: 27927311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Positive security screening episodes of patients with spinal implants are influenced by detector type and not implant material.
    Arhewoh R; Kelly BA; Kelly MP; Buchowski JM; Gupta MC; Luhmann SJ
    Spine J; 2022 May; 22(5):738-746. PubMed ID: 34936885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Airport metal detector activation is rare after posterior spinal fusion in children with scoliosis.
    Fabricant PD; Robles A; Blanco JS
    J Child Orthop; 2013 Dec; 7(6):531-6. PubMed ID: 24432117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Study Between Cobalt Chrome and Titanium Alloy Rods for Multilevel Spinal Fusion: Proximal Junctional Kyphosis More Frequently Occurred in Patients Having Cobalt Chrome Rods.
    Han S; Hyun SJ; Kim KJ; Jahng TA; Kim HJ
    World Neurosurg; 2017 Jul; 103():404-409. PubMed ID: 28427980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fatigue life of contoured cobalt chrome posterior spinal fusion rods.
    Nguyen TQ; Buckley JM; Ames C; Deviren V
    Proc Inst Mech Eng H; 2011 Feb; 225(2):194-8. PubMed ID: 21428153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Would CoCr rods provide better correctional forces than stainless steel or titanium for rigid scoliosis curves?
    Serhan H; Mhatre D; Newton P; Giorgio P; Sturm P
    J Spinal Disord Tech; 2013 Apr; 26(2):E70-4. PubMed ID: 22832558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cobalt-chrome and titanium alloy rods provide similar coronal and sagittal correction in adolescent idiopathic scoliosis.
    Sabah Y; Clément JL; Solla F; Rosello O; Rampal V
    Orthop Traumatol Surg Res; 2018 Nov; 104(7):1073-1077. PubMed ID: 30193983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive Evaluation of Accessory Rod Position, Rod Material and Diameter, Use of Cross-connectors, and Anterior Column Support in a Pedicle Subtraction Osteotomy Model: Part I: Effects on Apical Rod Strain: An In Vitro and In Silico Biomechanical Study.
    Gelb DE; Tareen J; Jazini E; Ludwig SC; Harris JA; Amin DB; Wang W; Van Horn MR; Patel PD; Mirabile BA; Bucklen BS
    Spine (Phila Pa 1976); 2021 Jan; 46(1):E1-E11. PubMed ID: 33315360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of Supplemental Short Pre-Contoured Accessory Rods and Cobalt Chrome Alloy Posterior Rods Reduces Primary Rod Strain and Range of Motion Across the Pedicle Subtraction Osteotomy Level: An In Vitro Biomechanical Study.
    Hallager DW; Gehrchen M; Dahl B; Harris JA; Gudipally M; Jenkins S; Wu AM; Bucklen BS
    Spine (Phila Pa 1976); 2016 Apr; 41(7):E388-95. PubMed ID: 27018904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effect of Contouring on Fatigue Strength of Spinal Rods: Is it Okay to Re-bend and Which Materials Are Best?
    Slivka MA; Fan YK; Eck JC
    Spine Deform; 2013 Nov; 1(6):395-400. PubMed ID: 27927364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical comparison between titanium and cobalt chromium rods used in a pedicle subtraction osteotomy model.
    Shah KN; Walker G; Koruprolu SC; Daniels AH
    Orthop Rev (Pavia); 2018 Mar; 10(1):7541. PubMed ID: 29770179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical analysis of cervicothoracic junction osteotomy in cadaveric model of ankylosing spondylitis: effect of rod material and diameter.
    Scheer JK; Tang JA; Deviren V; Acosta F; Buckley JM; Pekmezci M; McClellan RT; Ames CP
    J Neurosurg Spine; 2011 Mar; 14(3):330-5. PubMed ID: 21235305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rod stiffness as a risk factor of proximal junctional kyphosis after adult spinal deformity surgery: comparative study between cobalt chrome multiple-rod constructs and titanium alloy two-rod constructs.
    Han S; Hyun SJ; Kim KJ; Jahng TA; Lee S; Rhim SC
    Spine J; 2017 Jul; 17(7):962-968. PubMed ID: 28242335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postoperative magnetic resonance imaging artifact with cobalt-chromium versus titanium spinal instrumentation: presented at the 2013 Joint Spine Section Meeting. Clinical article.
    Ahmad FU; Sidani C; Fourzali R; Wang MY
    J Neurosurg Spine; 2013 Nov; 19(5):629-36. PubMed ID: 24053373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Electrocautery on Fatigue Life of Spinal Fusion Constructs-An In Vitro Biomechanical Study.
    Almansour H; Sonntag R; Pepke W; Bruckner T; Kretzer JP; Akbar M
    Materials (Basel); 2019 Aug; 12(15):. PubMed ID: 31382555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern?
    Serhan H; Slivka M; Albert T; Kwak SD
    Spine J; 2004; 4(4):379-87. PubMed ID: 15246296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prospective multicenter assessment of risk factors for rod fracture following surgery for adult spinal deformity.
    Smith JS; Shaffrey E; Klineberg E; Shaffrey CI; Lafage V; Schwab FJ; Protopsaltis T; Scheer JK; Mundis GM; Fu KM; Gupta MC; Hostin R; Deviren V; Kebaish K; Hart R; Burton DC; Line B; Bess S; Ames CP;
    J Neurosurg Spine; 2014 Dec; 21(6):994-1003. PubMed ID: 25325175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of orthopaedic implants in vivo by enhanced-sensitivity, walk-through metal detectors.
    Ramirez MA; Rodriguez EK; Zurakowski D; Richardson LC
    J Bone Joint Surg Am; 2007 Apr; 89(4):742-6. PubMed ID: 17403795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Airport detection of modern orthopedic implant metals.
    Pearson WG; Matthews LS
    Clin Orthop Relat Res; 1992 Jul; (280):261-2. PubMed ID: 1611756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effectiveness of transfixation and length of instrumentation on titanium and stainless steel transpedicular spine implants.
    Korovessis P; Baikousis A; Deligianni D; Mysirlis Y; Soucacos P
    J Spinal Disord; 2001 Apr; 14(2):109-17. PubMed ID: 11285422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.