These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 27927788)

  • 1. Modeling microelectrode biosensors: free-flow calibration can substantially underestimate tissue concentrations.
    Newton AJ; Wall MJ; Richardson MJ
    J Neurophysiol; 2017 Mar; 117(3):937-949. PubMed ID: 27927788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Adaptation of amperometric enzyme biosensor for glucose analysis in wine].
    Shkotova LV; Soldatkin AP; Dziadevich SV
    Ukr Biokhim Zh (1999); 2004; 76(3):114-21. PubMed ID: 19621749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization method to preserve enzyme specificity in biosensors: consequences for brain glutamate detection.
    Vasylieva N; Maucler C; Meiller A; Viscogliosi H; Lieutaud T; Barbier D; Marinesco S
    Anal Chem; 2013 Feb; 85(4):2507-15. PubMed ID: 23358125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold nanoparticle-modified ultramicroelectrode arrays for biosensing: a comparative assessment.
    Orozco J; Jiménez-Jorquera C; Fernández-Sánchez C
    Bioelectrochemistry; 2009 Jun; 75(2):176-81. PubMed ID: 19401273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of microband glucose biosensors using a screen-printing water-based carbon ink and their application in serum analysis.
    Pemberton RM; Pittson R; Biddle N; Hart JP
    Biosens Bioelectron; 2009 Jan; 24(5):1246-52. PubMed ID: 18778930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amperometric glucose biosensor based on layer-by-layer assembly of multilayer films composed of chitosan, gold nanoparticles and glucose oxidase modified Pt electrode.
    Wu BY; Hou SH; Yin F; Li J; Zhao ZX; Huang JD; Chen Q
    Biosens Bioelectron; 2007 Jan; 22(6):838-44. PubMed ID: 16675215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A blood-assisted optical biosensor for automatic glucose determination.
    Sanz V; de Marcos S; Galbán J
    Talanta; 2009 May; 78(3):846-51. PubMed ID: 19269439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microelectrode biosensor for real-time measurement of ATP in biological tissue.
    Llaudet E; Hatz S; Droniou M; Dale N
    Anal Chem; 2005 May; 77(10):3267-73. PubMed ID: 15889918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP microelectrode biosensor for stable long-term in vitro monitoring from gastrointestinal tissue.
    Patel BA; Rogers M; Wieder T; O'Hare D; Boutelle MG
    Biosens Bioelectron; 2011 Feb; 26(6):2890-6. PubMed ID: 21163639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Covalent enzyme immobilization by poly(ethylene glycol) diglycidyl ether (PEGDE) for microelectrode biosensor preparation.
    Vasylieva N; Barnych B; Meiller A; Maucler C; Pollegioni L; Lin JS; Barbier D; Marinesco S
    Biosens Bioelectron; 2011 Jun; 26(10):3993-4000. PubMed ID: 21546239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. General strategy for biosensor design and construction employing multifunctional surface-tethered components.
    Medintz IL; Anderson GP; Lassman ME; Goldman ER; Bettencourt LA; Mauro JM
    Anal Chem; 2004 Oct; 76(19):5620-9. PubMed ID: 15456279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosensing at disk microelectrode arrays. Inter-electrode functionalisation allows formatting into miniaturised sensing platforms of enhanced sensitivity.
    Baldrich E; Javier del Campo F; Muñoz FX
    Biosens Bioelectron; 2009 Dec; 25(4):920-6. PubMed ID: 19800216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and application of cell-based biosensors.
    Pancrazio JJ; Whelan JP; Borkholder DA; Ma W; Stenger DA
    Ann Biomed Eng; 1999; 27(6):697-711. PubMed ID: 10625143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous-flow multi-analyte biosensor cartridge with controllable linear response range.
    Frey O; Talaei S; van der Wal PD; Koudelka-Hep M; de Rooij NF
    Lab Chip; 2010 Sep; 10(17):2226-34. PubMed ID: 20664866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convection, diffusion and reaction in a surface-based biosensor: modeling of cooperativity and binding site competition on the surface and in the hydrogel.
    Lebedev K; Mafé S; Stroeve P
    J Colloid Interface Sci; 2006 Apr; 296(2):527-37. PubMed ID: 16359694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chip-based amperometric enzyme sensor system for monitoring of bioprocesses by flow-injection analysis.
    Bäcker M; Rakowski D; Poghossian A; Biselli M; Wagner P; Schöning MJ
    J Biotechnol; 2013 Feb; 163(4):371-6. PubMed ID: 22465601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The demonstration of an enhanced microelectrochemical transistor for measurements in neutral solution at low analyte concentration.
    Astier Y; Bartlett PN
    Bioelectrochemistry; 2004 Aug; 64(1):15-22. PubMed ID: 15219241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical biosensors: recommended definitions and classification.
    Thévenot DR; Toth K; Durst RA; Wilson GS
    Biosens Bioelectron; 2001 Jan; 16(1-2):121-31. PubMed ID: 11261847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Verification of performance with the automated direct optical TIRF immunosensor (River Analyser) in single and multi-analyte assays with real water samples.
    Tschmelak J; Proll G; Gauglitz G
    Biosens Bioelectron; 2004 Nov; 20(4):743-52. PubMed ID: 15522589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sonochemically fabricated microelectrode arrays for use as sensing platforms.
    Collyer SD; Davis F; Higson SP
    Sensors (Basel); 2010; 10(5):5090-132. PubMed ID: 22399926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.