These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 27927789)

  • 1. Keeping still doesn't "make sense": examining a role for movement variability by stabilizing the arm during a postural control task.
    Murnaghan CD; Carpenter MG; Chua R; Inglis JT
    J Neurophysiol; 2017 Feb; 117(2):846-852. PubMed ID: 27927789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postural adjustments for online corrections of arm movements in standing humans.
    Leonard JA; Gritsenko V; Ouckama R; Stapley PJ
    J Neurophysiol; 2011 May; 105(5):2375-88. PubMed ID: 21346210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional assessment of postural tremor during goal-directed aiming.
    Kelleran KJ; Morrison S; Russell DM
    Exp Brain Res; 2016 Dec; 234(12):3399-3409. PubMed ID: 27447789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anticipatory Postural Adjustments associated with reaching movements are programmed according to the availability of visual information.
    Esposti R; Bruttini C; Bolzoni F; Cavallari P
    Exp Brain Res; 2017 May; 235(5):1349-1360. PubMed ID: 28213690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploratory behavior during stance persists with visual feedback.
    Murnaghan CD; Horslen BC; Inglis JT; Carpenter MG
    Neuroscience; 2011 Nov; 195():54-9. PubMed ID: 21867743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anticipatory control of center of mass and joint stability during voluntary arm movement from a standing posture: interplay between active and passive control.
    Patla AE; Ishac MG; Winter DA
    Exp Brain Res; 2002 Apr; 143(3):318-27. PubMed ID: 11889509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of varying task constraints on solutions to joint coordination in a sit-to-stand task.
    Scholz JP; Reisman D; Schöner G
    Exp Brain Res; 2001 Dec; 141(4):485-500. PubMed ID: 11810142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postural stability and trunk muscle responses to the static and perturbed balance tasks in individuals with and without symptomatic degenerative lumbar disease.
    Lin YC; Niu CC; Nikkhoo M; Lu ML; Chen WC; Fu CJ; Cheng CH
    Gait Posture; 2018 Jul; 64():159-164. PubMed ID: 29909230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Target height affects the symmetry of the postural adjustments after (but not prior) the onset of reaching movements in upright standing.
    Oliveira DSV; Nardini AG; Alouche SR; Garbus RBSC; Freitas SMSF
    Neurosci Lett; 2018 Feb; 666():181-185. PubMed ID: 29289679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissociating the Influence of Limb Posture and Visual Feedback Shifts on the Adaptation to Novel Movement Dynamics.
    Fitzgerald JJ; Zhou W; Chase SM; Joiner WM
    Neuroscience; 2024 Jun; 549():24-41. PubMed ID: 38484835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postural control of three-dimensional prehension movements.
    Desmurget M; Prablanc C
    J Neurophysiol; 1997 Jan; 77(1):452-64. PubMed ID: 9120586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anticipatory postural adjustments associated with a forward leg raising in children: effects of age, segmental acceleration and sensory context.
    Palluel E; Ceyte H; Olivier I; Nougier V
    Clin Neurophysiol; 2008 Nov; 119(11):2546-54. PubMed ID: 18789757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How does lower limb dominance influence postural control movements during single leg stance?
    Promsri A; Haid T; Federolf P
    Hum Mov Sci; 2018 Apr; 58():165-174. PubMed ID: 29448161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling human upright posture: velocity information is more accurate than position or acceleration.
    Jeka J; Kiemel T; Creath R; Horak F; Peterka R
    J Neurophysiol; 2004 Oct; 92(4):2368-79. PubMed ID: 15140910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time visual feedback about postural activity increases postural instability and visually induced motion sickness.
    Li R; Peterson N; Walter HJ; Rath R; Curry C; Stoffregen TA
    Gait Posture; 2018 Sep; 65():251-255. PubMed ID: 30558940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does the type of visual feedback information change the control of standing balance?
    Dos Anjos F; Lemos T; Imbiriba LA
    Eur J Appl Physiol; 2016 Sep; 116(9):1771-9. PubMed ID: 27431210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shifting the balance: evidence of an exploratory role for postural sway.
    Carpenter MG; Murnaghan CD; Inglis JT
    Neuroscience; 2010 Nov; 171(1):196-204. PubMed ID: 20800663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organization of physiological tremors and coordination solutions to postural pointing on an uneven stance surface.
    Guo MC; Yang JF; Huang CT; Hwang IS
    J Electromyogr Kinesiol; 2012 Aug; 22(4):589-97. PubMed ID: 22503628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postural force fields of the human arm and their role in generating multijoint movements.
    Shadmehr R; Mussa-Ivaldi FA; Bizzi E
    J Neurosci; 1993 Jan; 13(1):45-62. PubMed ID: 8423483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vertical torque allows recording of anticipatory postural adjustments associated with slow, arm-raising movements.
    Bleuse S; Cassim F; Blatt JL; Defebvre L; Derambure P; Guieu JD
    Clin Biomech (Bristol); 2005 Aug; 20(7):693-9. PubMed ID: 15921833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.