BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

593 related articles for article (PubMed ID: 27927952)

  • 1. Postnatal Odor Exposure Increases the Strength of Interglomerular Lateral Inhibition onto Olfactory Bulb Tufted Cells.
    Geramita M; Urban NN
    J Neurosci; 2016 Dec; 36(49):12321-12327. PubMed ID: 27927952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prenatal and Early Postnatal Odorant Exposure Heightens Odor-Evoked Mitral Cell Responses in the Mouse Olfactory Bulb.
    Liu A; Urban NN
    eNeuro; 2017; 4(5):. PubMed ID: 28955723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early Odorant Exposure Increases the Number of Mitral and Tufted Cells Associated with a Single Glomerulus.
    Liu A; Savya S; Urban NN
    J Neurosci; 2016 Nov; 36(46):11646-11653. PubMed ID: 27852773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Interglomerular Inhibitory Networks on Olfactory Bulb Odor Representations.
    Zavitz D; Youngstrom IA; Borisyuk A; Wachowiak M
    J Neurosci; 2020 Jul; 40(31):5954-5969. PubMed ID: 32561671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in Glomerular-Layer-Mediated Feedforward Inhibition onto Mitral and Tufted Cells Lead to Distinct Modes of Intensity Coding.
    Geramita M; Urban NN
    J Neurosci; 2017 Feb; 37(6):1428-1438. PubMed ID: 28028200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential Impacts of Repeated Sampling on Odor Representations by Genetically-Defined Mitral and Tufted Cell Subpopulations in the Mouse Olfactory Bulb.
    Eiting TP; Wachowiak M
    J Neurosci; 2020 Aug; 40(32):6177-6188. PubMed ID: 32601245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional transformations of odor inputs in the mouse olfactory bulb.
    Adam Y; Livneh Y; Miyamichi K; Groysman M; Luo L; Mizrahi A
    Front Neural Circuits; 2014; 8():129. PubMed ID: 25408637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Interglomerular Circuit Potently Inhibits Olfactory Bulb Output Neurons by Both Direct and Indirect Pathways.
    Liu S; Puche AC; Shipley MT
    J Neurosci; 2016 Sep; 36(37):9604-17. PubMed ID: 27629712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling of Mouse Olfactory Bulb Projection Neurons to Fluctuating Odor Pulses.
    Dasgupta D; Warner TPA; Erskine A; Schaefer AT
    J Neurosci; 2022 May; 42(21):4278-4296. PubMed ID: 35440491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CCKergic Tufted Cells Differentially Drive Two Anatomically Segregated Inhibitory Circuits in the Mouse Olfactory Bulb.
    Sun X; Liu X; Starr ER; Liu S
    J Neurosci; 2020 Aug; 40(32):6189-6206. PubMed ID: 32605937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhalation Frequency Controls Reformatting of Mitral/Tufted Cell Odor Representations in the Olfactory Bulb.
    Díaz-Quesada M; Youngstrom IA; Tsuno Y; Hansen KR; Economo MN; Wachowiak M
    J Neurosci; 2018 Feb; 38(9):2189-2206. PubMed ID: 29374137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GABAB Receptors Tune Cortical Feedback to the Olfactory Bulb.
    Mazo C; Lepousez G; Nissant A; Valley MT; Lledo PM
    J Neurosci; 2016 Aug; 36(32):8289-304. PubMed ID: 27511004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synchronized oscillatory discharges of mitral/tufted cells with different molecular receptive ranges in the rabbit olfactory bulb.
    Kashiwadani H; Sasaki YF; Uchida N; Mori K
    J Neurophysiol; 1999 Oct; 82(4):1786-92. PubMed ID: 10515968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial Structure of Synchronized Inhibition in the Olfactory Bulb.
    Arnson HA; Strowbridge BW
    J Neurosci; 2017 Oct; 37(43):10468-10480. PubMed ID: 28947574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Subtype of Olfactory Bulb Interneurons Is Required for Odor Detection and Discrimination Behaviors.
    Takahashi H; Ogawa Y; Yoshihara S; Asahina R; Kinoshita M; Kitano T; Kitsuki M; Tatsumi K; Okuda M; Tatsumi K; Wanaka A; Hirai H; Stern PL; Tsuboi A
    J Neurosci; 2016 Aug; 36(31):8210-27. PubMed ID: 27488640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coding of odor molecules by mitral/tufted cells in rabbit olfactory bulb. I. Aliphatic compounds.
    Imamura K; Mataga N; Mori K
    J Neurophysiol; 1992 Dec; 68(6):1986-2002. PubMed ID: 1491253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel mitral and tufted cell pathways route distinct odor information to different targets in the olfactory cortex.
    Igarashi KM; Ieki N; An M; Yamaguchi Y; Nagayama S; Kobayakawa K; Kobayakawa R; Tanifuji M; Sakano H; Chen WR; Mori K
    J Neurosci; 2012 Jun; 32(23):7970-85. PubMed ID: 22674272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coding of odor molecules by mitral/tufted cells in rabbit olfactory bulb. II. Aromatic compounds.
    Katoh K; Koshimoto H; Tani A; Mori K
    J Neurophysiol; 1993 Nov; 70(5):2161-75. PubMed ID: 8294977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Task-Demand-Dependent Neural Representation of Odor Information in the Olfactory Bulb and Posterior Piriform Cortex.
    Wang D; Liu P; Mao X; Zhou Z; Cao T; Xu J; Sun C; Li A
    J Neurosci; 2019 Dec; 39(50):10002-10018. PubMed ID: 31672791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Odor response properties of neighboring mitral/tufted cells in the rat olfactory bulb.
    Egaña JI; Aylwin ML; Maldonado PE
    Neuroscience; 2005; 134(3):1069-80. PubMed ID: 15994017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.