These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 27928556)

  • 1. Ligand-assisted thickness tailoring of highly luminescent colloidal CH
    Levchuk I; Herre P; Brandl M; Osvet A; Hock R; Peukert W; Schweizer P; Spiecker E; Batentschuk M; Brabec CJ
    Chem Commun (Camb); 2016 Dec; 53(1):244-247. PubMed ID: 27928556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Tunable Colloidal Perovskite Nanoplatelets through Variable Cation, Metal, and Halide Composition.
    Weidman MC; Seitz M; Stranks SD; Tisdale WA
    ACS Nano; 2016 Aug; 10(8):7830-9. PubMed ID: 27471862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals.
    Vybornyi O; Yakunin S; Kovalenko MV
    Nanoscale; 2016 Mar; 8(12):6278-83. PubMed ID: 26645348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile Synthesis of Colloidal Lead Halide Perovskite Nanoplatelets via Ligand-Assisted Reprecipitation.
    Ha SK; Tisdale WA
    J Vis Exp; 2019 Oct; (152):. PubMed ID: 31633679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology.
    Zhang F; Zhong H; Chen C; Wu XG; Hu X; Huang H; Han J; Zou B; Dong Y
    ACS Nano; 2015 Apr; 9(4):4533-42. PubMed ID: 25824283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brightly Luminescent and Color-Tunable Formamidinium Lead Halide Perovskite FAPbX
    Levchuk I; Osvet A; Tang X; Brandl M; Perea JD; Hoegl F; Matt GJ; Hock R; Batentschuk M; Brabec CJ
    Nano Lett; 2017 May; 17(5):2765-2770. PubMed ID: 28388067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Luminescent Cesium Lead Halide Perovskite Nanocrystals with Tunable Composition and Thickness by Ultrasonication.
    Tong Y; Bladt E; Aygüler MF; Manzi A; Milowska KZ; Hintermayr VA; Docampo P; Bals S; Urban AS; Polavarapu L; Feldmann J
    Angew Chem Int Ed Engl; 2016 Oct; 55(44):13887-13892. PubMed ID: 27690323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dilution-Induced Formation of Hybrid Perovskite Nanoplatelets.
    Tong Y; Ehrat F; Vanderlinden W; Cardenas-Daw C; Stolarczyk JK; Polavarapu L; Urban AS
    ACS Nano; 2016 Dec; 10(12):10936-10944. PubMed ID: 28024369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cost-Effective Strategy for the Synthesis of Air-Stable CH
    Guo SN; Wu H; Wang D; Wang JX
    Langmuir; 2021 Oct; 37(39):11520-11525. PubMed ID: 34555896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum Size Effect in Organometal Halide Perovskite Nanoplatelets.
    Sichert JA; Tong Y; Mutz N; Vollmer M; Fischer S; Milowska KZ; García Cortadella R; Nickel B; Cardenas-Daw C; Stolarczyk JK; Urban AS; Feldmann J
    Nano Lett; 2015 Oct; 15(10):6521-7. PubMed ID: 26327242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand-Mediated Synthesis of Shape-Controlled Cesium Lead Halide Perovskite Nanocrystals via Reprecipitation Process at Room Temperature.
    Sun S; Yuan D; Xu Y; Wang A; Deng Z
    ACS Nano; 2016 Mar; 10(3):3648-57. PubMed ID: 26886173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-Scale Synthesis of Highly Luminescent Perovskite-Related CsPb2 Br5 Nanoplatelets and Their Fast Anion Exchange.
    Wang KH; Wu L; Li L; Yao HB; Qian HS; Yu SH
    Angew Chem Int Ed Engl; 2016 Jul; 55(29):8328-32. PubMed ID: 27213688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strongly Coupled Tin-Halide Perovskites to Modulate Light Emission: Tunable 550-640 nm Light Emission (FWHM 36-80 nm) with a Quantum Yield of up to 6.4.
    Chen MY; Lin JT; Hsu CS; Chang CK; Chiu CW; Chen HM; Chou PT
    Adv Mater; 2018 May; 30(20):e1706592. PubMed ID: 29603435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-dimensional perovskite nanoplatelet synthesis using in situ photophysical monitoring to establish controlled growth.
    Do M; Kim I; Kolaczkowski MA; Kang J; Kamat GA; Yuan Z; Barchi NS; Wang LW; Liu Y; Jurow MJ; Sutter-Fella CM
    Nanoscale; 2019 Oct; 11(37):17262-17269. PubMed ID: 31246216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-step synthesis of colloidal CH
    Zheng H; Pan W; Shen W
    Nanotechnology; 2018 Nov; 29(45):455601. PubMed ID: 30136648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrathin CsPbX
    Chen D; Chen X; Li J; Li X; Zhong J
    Dalton Trans; 2018 Jul; 47(29):9845-9849. PubMed ID: 29993062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals.
    De Roo J; Ibáñez M; Geiregat P; Nedelcu G; Walravens W; Maes J; Martins JC; Van Driessche I; Kovalenko MV; Hens Z
    ACS Nano; 2016 Feb; 10(2):2071-81. PubMed ID: 26786064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imprinting Chirality onto the Electronic States of Colloidal Perovskite Nanoplatelets.
    Georgieva ZN; Bloom BP; Ghosh S; Waldeck DH
    Adv Mater; 2018 Jun; 30(23):e1800097. PubMed ID: 29700859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lead-free silver-antimony halide double perovskite quantum dots with superior blue photoluminescence.
    Lv K; Qi S; Liu G; Lou Y; Chen J; Zhao Y
    Chem Commun (Camb); 2019 Dec; 55(98):14741-14744. PubMed ID: 31754680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of morphology, photoluminescence, and stability of colloidal methylammonium lead bromide nanocrystals by oleylamine capping molecules.
    Lu CH; Hu J; Shih WY; Shih WH
    J Colloid Interface Sci; 2016 Dec; 484():17-23. PubMed ID: 27572611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.