These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 27928627)

  • 1. Recommended approaches in the application of toxicogenomics to derive points of departure for chemical risk assessment.
    Farmahin R; Williams A; Kuo B; Chepelev NL; Thomas RS; Barton-Maclaren TS; Curran IH; Nong A; Wade MG; Yauk CL
    Arch Toxicol; 2017 May; 91(5):2045-2065. PubMed ID: 27928627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Genomics Platform and Statistical Filtering on Transcriptional Benchmark Doses (BMD) and Multiple Approaches for Selection of Chemical Point of Departure (PoD).
    Webster AF; Chepelev N; Gagné R; Kuo B; Recio L; Williams A; Yauk CL
    PLoS One; 2015; 10(8):e0136764. PubMed ID: 26313361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal concordance between apical and transcriptional points of departure for chemical risk assessment.
    Thomas RS; Wesselkamper SC; Wang NC; Zhao QJ; Petersen DD; Lambert JC; Cote I; Yang L; Healy E; Black MB; Clewell HJ; Allen BC; Andersen ME
    Toxicol Sci; 2013 Jul; 134(1):180-94. PubMed ID: 23596260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of toxicogenomics and traditional approaches to inform mode of action and points of departure in human health risk assessment of benzo[a]pyrene in drinking water.
    Moffat I; Chepelev N; Labib S; Bourdon-Lacombe J; Kuo B; Buick JK; Lemieux F; Williams A; Halappanavar S; Malik A; Luijten M; Aubrecht J; Hyduke DR; Fornace AJ; Swartz CD; Recio L; Yauk CL
    Crit Rev Toxicol; 2015 Jan; 45(1):1-43. PubMed ID: 25605026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano-risk Science: application of toxicogenomics in an adverse outcome pathway framework for risk assessment of multi-walled carbon nanotubes.
    Labib S; Williams A; Yauk CL; Nikota JK; Wallin H; Vogel U; Halappanavar S
    Part Fibre Toxicol; 2016 Mar; 13():15. PubMed ID: 26979667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short-term toxicogenomics as an alternative approach to chronic in vivo studies for derivation of points of departure: A case study in the rat with a triazole fungicide.
    LaRocca J; Costa E; Sriram S; Hannas BR; Johnson KJ
    Regul Toxicol Pharmacol; 2020 Jun; 113():104655. PubMed ID: 32268158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BMDExpress Data Viewer - a visualization tool to analyze BMDExpress datasets.
    Kuo B; Francina Webster A; Thomas RS; Yauk CL
    J Appl Toxicol; 2016 Aug; 36(8):1048-59. PubMed ID: 26671443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microRNA or messenger RNA point of departure estimates an apical endpoint point of departure in a rat developmental toxicity model.
    Johnson KJ; Costa E; Marshall V; Sriram S; Venkatraman A; Stebbins K; LaRocca J
    Birth Defects Res; 2022 Jul; 114(11):559-576. PubMed ID: 35596682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Rat Liver Transcriptomic Point of Departure Predicts a Prospective Liver or Non-liver Apical Point of Departure.
    Johnson KJ; Auerbach SS; Costa E
    Toxicol Sci; 2020 Jul; 176(1):86-102. PubMed ID: 32384157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hepatic transcriptional dose-response analysis of male and female Fischer rats exposed to hexabromocyclododecane.
    Farmahin R; Gannon AM; Gagné R; Rowan-Carroll A; Kuo B; Williams A; Curran I; Yauk CL
    Food Chem Toxicol; 2019 Nov; 133():110262. PubMed ID: 30594549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the benchmark dose for point of departure determination for a variety of chemical classes in applied regulatory settings.
    Izadi H; Grundy JE; Bose R
    Risk Anal; 2012 May; 32(5):830-5. PubMed ID: 22126138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Editor's Highlight: Application of Gene Set Enrichment Analysis for Identification of Chemically Induced, Biologically Relevant Transcriptomic Networks and Potential Utilization in Human Health Risk Assessment.
    Dean JL; Zhao QJ; Lambert JC; Hawkins BS; Thomas RS; Wesselkamper SC
    Toxicol Sci; 2017 May; 157(1):85-99. PubMed ID: 28123101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rat subchronic study transcriptional point of departure estimates a carcinogenicity study apical point of departure.
    Bianchi E; Costa E; Yan ZJ; Murphy L; Howell J; Anderson D; Mukerji P; Venkatraman A; Terry C; Johnson KJ
    Food Chem Toxicol; 2021 Jan; 147():111869. PubMed ID: 33217531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of microarrays and RNA-seq for gene expression analyses of dose-response experiments.
    Black MB; Parks BB; Pluta L; Chu TM; Allen BC; Wolfinger RD; Thomas RS
    Toxicol Sci; 2014 Feb; 137(2):385-403. PubMed ID: 24194394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptomic points-of-departure from short-term exposure studies are protective of chronic effects for fish exposed to estrogenic chemicals.
    Pagé-Larivière F; Crump D; O'Brien JM
    Toxicol Appl Pharmacol; 2019 Sep; 378():114634. PubMed ID: 31226361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional benchmark dose modeling: Exploring how advances in chemical risk assessment may be applied to the radiation field.
    Chauhan V; Kuo B; McNamee JP; Wilkins RC; Yauk CL
    Environ Mol Mutagen; 2016 Oct; 57(8):589-604. PubMed ID: 27601323
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 17.