These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 27929730)

  • 1. Detection of Glaucoma Using Image Processing Techniques: A Critique.
    Kumar BN; Chauhan RP; Dahiya N
    Semin Ophthalmol; 2018; 33(2):275-283. PubMed ID: 27929730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. State-of-the-Art Techniques in Optic Cup and Disc Localization for Glaucoma Diagnosis: Research Results and Issues.
    Balasubramanian K; Ananthamoorthy NP
    Crit Rev Biomed Eng; 2020; 48(1):63-83. PubMed ID: 32749119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated diagnosis of glaucoma using texture and higher order spectra features.
    Acharya UR; Dua S; Du X; Sree S V; Chua CK
    IEEE Trans Inf Technol Biomed; 2011 May; 15(3):449-55. PubMed ID: 21349793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of glaucoma using retinal fundus images: A comprehensive review.
    Shabbir A; Rasheed A; Shehraz H; Saleem A; Zafar B; Sajid M; Ali N; Dar SH; Shehryar T
    Math Biosci Eng; 2021 Mar; 18(3):2033-2076. PubMed ID: 33892536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Focal biologically inspired feature for glaucoma type classification.
    Cheng J; Tao D; Liu J; Wong DW; Lee BH; Baskaran M; Wong TY; Aung T
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 3):91-8. PubMed ID: 22003688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Diagnostic approaches for early detection of glaucoma progression].
    Arend KO; Plange N
    Klin Monbl Augenheilkd; 2006 Mar; 223(3):194-216. PubMed ID: 16552653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic glaucoma screening using optic nerve head measurements and random forest classifier on fundus images.
    Bouacheria M; Cherfa Y; Cherfa A; Belkhamsa N
    Phys Eng Sci Med; 2020 Dec; 43(4):1265-1277. PubMed ID: 32986219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Aiming for zero blindness].
    Nakazawa T
    Nippon Ganka Gakkai Zasshi; 2015 Mar; 119(3):168-93; discussion 194. PubMed ID: 25854109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optic nerve head segmentation using fundus images and optical coherence tomography images for glaucoma detection.
    Ganesh Babu TR; Shenbaga Devi S; Venkatesh R
    Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub; 2015 Dec; 159(4):607-15. PubMed ID: 26498216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer-aided diagnosis of glaucoma using fundus images: A review.
    Hagiwara Y; Koh JEW; Tan JH; Bhandary SV; Laude A; Ciaccio EJ; Tong L; Acharya UR
    Comput Methods Programs Biomed; 2018 Oct; 165():1-12. PubMed ID: 30337064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: a review.
    Haleem MS; Han L; van Hemert J; Li B
    Comput Med Imaging Graph; 2013; 37(7-8):581-96. PubMed ID: 24139134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated interpretation of optic nerve images: a data mining framework for glaucoma diagnostic support.
    Abidi SS; Artes PH; Yun S; Yu J
    Stud Health Technol Inform; 2007; 129(Pt 2):1309-13. PubMed ID: 17911926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sparse dissimilarity-constrained coding for glaucoma screening.
    Cheng J; Yin F; Wong DW; Tao D; Liu J
    IEEE Trans Biomed Eng; 2015 May; 62(5):1395-403. PubMed ID: 25585408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glaucoma detection using novel optic disc localization, hybrid feature set and classification techniques.
    Akram MU; Tariq A; Khalid S; Javed MY; Abbas S; Yasin UU
    Australas Phys Eng Sci Med; 2015 Dec; 38(4):643-55. PubMed ID: 26399880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An ensembling approach for optic cup detection based on spatial heuristic analysis in retinal fundus images.
    Wong DW; Liu J; Tan NM; Fengshou Y; Cheung C; Baskaran M; Aung T; Wong TY
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1426-9. PubMed ID: 23366168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convex hull based neuro-retinal optic cup ellipse optimization in glaucoma diagnosis.
    Zhang Z; Liu J; Cherian NS; Sun Y; Lim JH; Wong WK; Tan NM; Lu S; Li H; Wong TY
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1441-4. PubMed ID: 19963748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in retinal ganglion cell imaging.
    Balendra SI; Normando EM; Bloom PA; Cordeiro MF
    Eye (Lond); 2015 Oct; 29(10):1260-9. PubMed ID: 26293138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel algorithm to detect glaucoma risk using texton and local configuration pattern features extracted from fundus images.
    Acharya UR; Bhat S; Koh JEW; Bhandary SV; Adeli H
    Comput Biol Med; 2017 Sep; 88():72-83. PubMed ID: 28700902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of Glaucoma Stages Using Image Empirical Mode Decomposition from Fundus Images.
    Parashar D; Agrawal DK
    J Digit Imaging; 2022 Oct; 35(5):1283-1292. PubMed ID: 35581407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An enhanced deep image model for glaucoma diagnosis using feature-based detection in retinal fundus.
    Singh LK; Pooja ; Garg H; Khanna M; Bhadoria RS
    Med Biol Eng Comput; 2021 Feb; 59(2):333-353. PubMed ID: 33439453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.