These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 27929735)
1. Development of adsorptive hybrid filters to enable two-step purification of biologics. Singh N; Arunkumar A; Peck M; Voloshin AM; Moreno AM; Tan Z; Hester J; Borys MC; Li ZJ MAbs; 2017; 9(2):350-363. PubMed ID: 27929735 [TBL] [Abstract][Full Text] [Related]
2. Host cell protein impurities in chromatographic polishing steps for monoclonal antibody purification. Levy NE; Valente KN; Lee KH; Lenhoff AM Biotechnol Bioeng; 2016 Jun; 113(6):1260-72. PubMed ID: 26550778 [TBL] [Abstract][Full Text] [Related]
3. Identification and tracking of problematic host cell proteins removed by a synthetic, highly functionalized nonwoven media in downstream bioprocessing of monoclonal antibodies. Gilgunn S; El-Sabbahy H; Albrecht S; Gaikwad M; Corrigan K; Deakin L; Jellum G; Bones J J Chromatogr A; 2019 Jun; 1595():28-38. PubMed ID: 30898377 [TBL] [Abstract][Full Text] [Related]
4. Development of a novel and efficient cell culture flocculation process using a stimulus responsive polymer to streamline antibody purification processes. Kang YK; Hamzik J; Felo M; Qi B; Lee J; Ng S; Liebisch G; Shanehsaz B; Singh N; Persaud K; Ludwig DL; Balderes P Biotechnol Bioeng; 2013 Nov; 110(11):2928-37. PubMed ID: 23740533 [TBL] [Abstract][Full Text] [Related]
5. Single-stage chromatographic clarification of Chinese Hamster Ovary cell harvest reduces cost of protein production. O'Mara B; Singh NK; Menendez A; Tipton B; Vail A; Voloshin A; Buechler Y; Anderson SM Biotechnol Prog; 2023 Mar; 39(2):e3323. PubMed ID: 36598038 [TBL] [Abstract][Full Text] [Related]
6. Adsorptive filtration: A case study for early impurity reduction in an Escherichia coli production process. Metzger KFJ; Voloshin A; Schillinger H; Kühnel H; Maurer M Biotechnol Prog; 2020 May; 36(3):e2948. PubMed ID: 31837191 [TBL] [Abstract][Full Text] [Related]
7. Removal of endogenous retrovirus-like particles from CHO-cell derived products using Q sepharose fast flow chromatography. Strauss DM; Lute S; Brorson K; Blank GS; Chen Q; Yang B Biotechnol Prog; 2009; 25(4):1194-7. PubMed ID: 19452543 [TBL] [Abstract][Full Text] [Related]
9. Design of a filter train for precipitate removal in monoclonal antibody downstream processing. Kandula S; Babu S; Jin M; Shukla AA Biotechnol Appl Biochem; 2009 Oct; 54(3):149-55. PubMed ID: 19656082 [TBL] [Abstract][Full Text] [Related]
10. Demonstration of robust host cell protein clearance in biopharmaceutical downstream processes. Shukla AA; Jiang C; Ma J; Rubacha M; Flansburg L; Lee SS Biotechnol Prog; 2008; 24(3):615-22. PubMed ID: 18410156 [TBL] [Abstract][Full Text] [Related]
11. Fiber chromatographic enabled process intensification increases monoclonal antibody product yield. Anderson SM; Seto E; Chau D; Lee B; Vail A; Ding S; Voloshin A; Nagel M Biotechnol Bioeng; 2024 Feb; 121(2):757-770. PubMed ID: 37902763 [TBL] [Abstract][Full Text] [Related]
12. Effectiveness of host cell protein removal using depth filtration with a filter containing diatomaceous earth. Nejatishahidein N; Borujeni EE; Roush DJ; Zydney AL Biotechnol Prog; 2020 Nov; 36(6):e3028. PubMed ID: 32447812 [TBL] [Abstract][Full Text] [Related]
13. Exploitation of the adsorptive properties of depth filters for host cell protein removal during monoclonal antibody purification. Yigzaw Y; Piper R; Tran M; Shukla AA Biotechnol Prog; 2006; 22(1):288-96. PubMed ID: 16454522 [TBL] [Abstract][Full Text] [Related]
14. Enhancing Protein A performance in mAb processing: A method to reduce and rapidly evaluate host cell DNA levels during primary clarification. Koehler KC; Jokondo Z; Narayan J; Voloshin AM; Castro-Forero AA Biotechnol Prog; 2019 Nov; 35(6):e2882. PubMed ID: 31276322 [TBL] [Abstract][Full Text] [Related]
15. Investigating the combination of single-pass tangential flow filtration and anion exchange chromatography for intensified mAb polishing. Elich T; Goodrich E; Lutz H; Mehta U Biotechnol Prog; 2019 Sep; 35(5):e2862. PubMed ID: 31168950 [TBL] [Abstract][Full Text] [Related]
17. Innovative next-generation monoclonal antibody purification using activated carbon: A challenge for flow-through and column-free processes. Ishihara T; Miyahara M; Yamada T; Yamamoto K J Chromatogr B Analyt Technol Biomed Life Sci; 2019 Jul; 1121():72-81. PubMed ID: 31128526 [TBL] [Abstract][Full Text] [Related]
18. The effect of feed quality due to clarification strategy on the design and performance of protein A periodic counter-current chromatography. El-Sabbahy H; Ward D; Ogonah O; Deakin L; Jellum GM; Bracewell DG Biotechnol Prog; 2018 Nov; 34(6):1380-1392. PubMed ID: 30281957 [TBL] [Abstract][Full Text] [Related]
19. Cationic polymer precipitation for enhanced impurity removal in downstream processing. Li Z; Chen J; Martinez-Fonts K; Rauscher M; Rivera S; Welsh J; Kandula S Biotechnol Bioeng; 2023 Jul; 120(7):1902-1913. PubMed ID: 37148495 [TBL] [Abstract][Full Text] [Related]
20. The dynamics of the CHO host cell protein profile during clarification and protein A capture in a platform antibody purification process. Hogwood CE; Tait AS; Koloteva-Levine N; Bracewell DG; Smales CM Biotechnol Bioeng; 2013 Jan; 110(1):240-51. PubMed ID: 22806637 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]