BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 27930301)

  • 1. Reprogramming cell fate with a genome-scale library of artificial transcription factors.
    Eguchi A; Wleklinski MJ; Spurgat MC; Heiderscheit EA; Kropornicka AS; Vu CK; Bhimsaria D; Swanson SA; Stewart R; Ramanathan P; Kamp TJ; Slukvin I; Thomson JA; Dutton JR; Ansari AZ
    Proc Natl Acad Sci U S A; 2016 Dec; 113(51):E8257-E8266. PubMed ID: 27930301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reprogramming cell fate with artificial transcription factors.
    Heiderscheit EA; Eguchi A; Spurgat MC; Ansari AZ
    FEBS Lett; 2018 Mar; 592(6):888-900. PubMed ID: 29389011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interrogating genomes with combinatorial artificial transcription factor libraries: asking zinc finger questions.
    Beltran A; Liu Y; Parikh S; Temple B; Blancafort P
    Assay Drug Dev Technol; 2006 Jun; 4(3):317-31. PubMed ID: 16834537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GATA family members as inducers for cellular reprogramming to pluripotency.
    Shu J; Zhang K; Zhang M; Yao A; Shao S; Du F; Yang C; Chen W; Wu C; Yang W; Sun Y; Deng H
    Cell Res; 2015 Feb; 25(2):169-80. PubMed ID: 25591928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-propagating artificial transcription factors to enhance upregulation of target genes.
    Mori T; Sasaki J; Saito Y; Aoyama Y; Sera T
    Bioorg Med Chem Lett; 2010 Jun; 20(12):3479-81. PubMed ID: 20529678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of gene expression using zinc finger-based artificial transcription factors.
    Stolzenburg S; Bilsland A; Keith WN; Rots MG
    Methods Mol Biol; 2010; 649():117-32. PubMed ID: 20680831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zinc-finger-based artificial transcription factors and their applications.
    Sera T
    Adv Drug Deliv Rev; 2009 Jul; 61(7-8):513-26. PubMed ID: 19394375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Meta-Analysis of Transcriptome Regulation During Induction to Cardiac Myocyte Fate From Mouse and Human Fibroblasts.
    Rastegar-Pouyani S; Khazaei N; Wee P; Yaqubi M; Mohammadnia A
    J Cell Physiol; 2017 Aug; 232(8):2053-2062. PubMed ID: 27579918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational design, selection and specificity of artificial transcription factors (ATFs): the influence of chromatin in target gene regulation.
    Blancafort P; Beltran AS
    Comb Chem High Throughput Screen; 2008 Feb; 11(2):146-58. PubMed ID: 18336208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanog, Oct4 and Tet1 interplay in establishing pluripotency.
    Olariu V; Lövkvist C; Sneppen K
    Sci Rep; 2016 May; 6():25438. PubMed ID: 27146218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directed Evolution of an Enhanced POU Reprogramming Factor for Cell Fate Engineering.
    Tan DS; Chen Y; Gao Y; Bednarz A; Wei Y; Malik V; Ho DH; Weng M; Ho SY; Srivastava Y; Velychko S; Yang X; Fan L; Kim J; Graumann J; Stormo GD; Braun T; Yan J; Schöler HR; Jauch R
    Mol Biol Evol; 2021 Jun; 38(7):2854-2868. PubMed ID: 33720298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determining DNA sequence specificity of natural and artificial transcription factors by cognate site identifier analysis.
    Ozers MS; Warren CL; Ansari AZ
    Methods Mol Biol; 2009; 544():637-53. PubMed ID: 19488729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a small molecule that turns ON the pluripotency gene circuitry in human fibroblasts.
    Pandian GN; Sato S; Anandhakumar C; Taniguchi J; Takashima K; Syed J; Han L; Saha A; Bando T; Nagase H; Sugiyama H
    ACS Chem Biol; 2014 Dec; 9(12):2729-36. PubMed ID: 25366962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling gene networks and cell fate with precision-targeted DNA-binding proteins and small-molecule-based genome readers.
    Eguchi A; Lee GO; Wan F; Erwin GS; Ansari AZ
    Biochem J; 2014 Sep; 462(3):397-413. PubMed ID: 25145439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity among POU transcription factors in chromatin recognition and cell fate reprogramming.
    Malik V; Zimmer D; Jauch R
    Cell Mol Life Sci; 2018 May; 75(9):1587-1612. PubMed ID: 29335749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical POU domain residues confer Oct4 uniqueness in somatic cell reprogramming.
    Jin W; Wang L; Zhu F; Tan W; Lin W; Chen D; Sun Q; Xia Z
    Sci Rep; 2016 Feb; 6():20818. PubMed ID: 26877091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Construction of a SV40 promoter specific artificial transcription factor].
    Zhao XH; Zhu XD; Liu J; Rao XJ; Huang PT
    Sheng Wu Gong Cheng Xue Bao; 2003 Sep; 19(5):608-12. PubMed ID: 15969093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of an artificial zinc finger epigenetic modulator: widespread binding but limited regulation.
    Grimmer MR; Stolzenburg S; Ford E; Lister R; Blancafort P; Farnham PJ
    Nucleic Acids Res; 2014; 42(16):10856-68. PubMed ID: 25122745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc finger artificial transcription factor-based nearest inactive analogue/nearest active analogue strategy used for the identification of plant genes controlling homologous recombination.
    Jia Q; van Verk MC; Pinas JE; Lindhout BI; Hooykaas PJ; van der Zaal BJ
    Plant Biotechnol J; 2013 Dec; 11(9):1069-79. PubMed ID: 23915119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic reprogramming of tumor cells by zinc finger transcription factors.
    Blancafort P; Chen EI; Gonzalez B; Bergquist S; Zijlstra A; Guthy D; Brachat A; Brakenhoff RH; Quigley JP; Erdmann D; Barbas CF
    Proc Natl Acad Sci U S A; 2005 Aug; 102(33):11716-21. PubMed ID: 16081541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.