These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 27930664)

  • 1. Reliable Analysis of Single-Unit Recordings from the Human Brain under Noisy Conditions: Tracking Neurons over Hours.
    Niediek J; Boström J; Elger CE; Mormann F
    PLoS One; 2016; 11(12):e0166598. PubMed ID: 27930664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spike detection from noisy neural data in linear-probe recordings.
    Takekawa T; Ota K; Murayama M; Fukai T
    Eur J Neurosci; 2014 Jun; 39(11):1943-50. PubMed ID: 24827558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Online detection and sorting of extracellularly recorded action potentials in human medial temporal lobe recordings, in vivo.
    Rutishauser U; Schuman EM; Mamelak AN
    J Neurosci Methods; 2006 Jun; 154(1-2):204-24. PubMed ID: 16488479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ViSAPy: a Python tool for biophysics-based generation of virtual spiking activity for evaluation of spike-sorting algorithms.
    Hagen E; Ness TV; Khosrowshahi A; Sørensen C; Fyhn M; Hafting T; Franke F; Einevoll GT
    J Neurosci Methods; 2015 Apr; 245():182-204. PubMed ID: 25662445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel and Simple Spike Sorting Implementation.
    Petrantonakis PC; Poirazi P
    IEEE Trans Neural Syst Rehabil Eng; 2017 Apr; 25(4):323-333. PubMed ID: 28113325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate spike sorting for multi-unit recordings.
    Takekawa T; Isomura Y; Fukai T
    Eur J Neurosci; 2010 Jan; 31(2):263-72. PubMed ID: 20074217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multielectrode recordings from auditory neurons in the brain of a small grasshopper.
    Bhavsar MB; Heinrich R; Stumpner A
    J Neurosci Methods; 2015 Dec; 256():63-73. PubMed ID: 26335799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimates of distributed coding of visual objects by single neurons in the human brain depend on which spike sorting technique is used.
    Steinmetz PN
    J Neural Eng; 2020 Apr; 17(2):026030. PubMed ID: 31951220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spike sorting of synchronous spikes from local neuron ensembles.
    Franke F; Pröpper R; Alle H; Meier P; Geiger JR; Obermayer K; Munk MH
    J Neurophysiol; 2015 Oct; 114(4):2535-49. PubMed ID: 26289473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Realistic simulation of extracellular recordings.
    Martinez J; Pedreira C; Ison MJ; Quian Quiroga R
    J Neurosci Methods; 2009 Nov; 184(2):285-93. PubMed ID: 19703490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural spike sorting using iterative ICA and a deflation-based approach.
    Tiganj Z; Mboup M
    J Neural Eng; 2012 Dec; 9(6):066002. PubMed ID: 23075499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A detailed and fast model of extracellular recordings.
    Camuñas-Mesa LA; Quiroga RQ
    Neural Comput; 2013 May; 25(5):1191-212. PubMed ID: 23470125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localising and classifying neurons from high density MEA recordings.
    Delgado Ruz I; Schultz SR
    J Neurosci Methods; 2014 Aug; 233():115-28. PubMed ID: 24954540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Object perception in natural scenes: encoding by inferior temporal cortex simultaneously recorded neurons.
    Aggelopoulos NC; Franco L; Rolls ET
    J Neurophysiol; 2005 Mar; 93(3):1342-57. PubMed ID: 15496489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel framework for feature extraction in multi-sensor action potential sorting.
    Wu SC; Swindlehurst AL; Nenadic Z
    J Neurosci Methods; 2015 Sep; 253():262-71. PubMed ID: 26187403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model-based spike sorting with a mixture of drifting t-distributions.
    Shan KQ; Lubenov EV; Siapas AG
    J Neurosci Methods; 2017 Aug; 288():82-98. PubMed ID: 28652008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SpikeInterface, a unified framework for spike sorting.
    Buccino AP; Hurwitz CL; Garcia S; Magland J; Siegle JH; Hurwitz R; Hennig MH
    Elife; 2020 Nov; 9():. PubMed ID: 33170122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Framework for the Comparative Assessment of Neuronal Spike Sorting Algorithms towards More Accurate Off-Line and On-Line Microelectrode Arrays Data Analysis.
    Regalia G; Coelli S; Biffi E; Ferrigno G; Pedrocchi A
    Comput Intell Neurosci; 2016; 2016():8416237. PubMed ID: 27239191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computationally efficient simulation of extracellular recordings with multielectrode arrays.
    Thorbergsson PT; Garwicz M; Schouenborg J; Johansson AJ
    J Neurosci Methods; 2012 Oct; 211(1):133-44. PubMed ID: 22960053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic sorting for multi-neuronal activity recorded with tetrodes in the presence of overlapping spikes.
    Takahashi S; Anzai Y; Sakurai Y
    J Neurophysiol; 2003 Apr; 89(4):2245-58. PubMed ID: 12612049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.