BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 27930677)

  • 1. De Novo Sequencing and Comparative Analysis of Schima superba Seedlings to Explore the Response to Drought Stress.
    Han BC; Wei W; Mi XC; Ma KP
    PLoS One; 2016; 11(12):e0166975. PubMed ID: 27930677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo assembly and discovery of genes that are involved in drought tolerance in Tibetan Sophora moorcroftiana.
    Li H; Yao W; Fu Y; Li S; Guo Q
    PLoS One; 2015; 10(1):e111054. PubMed ID: 25559297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring drought stress-regulated genes in senna (Cassia angustifolia Vahl.): a transcriptomic approach.
    Mehta RH; Ponnuchamy M; Kumar J; Reddy NR
    Funct Integr Genomics; 2017 Jan; 17(1):1-25. PubMed ID: 27709374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo transcriptome sequencing and gene expression profiling of Magnolia wufengensis in response to cold stress.
    Deng S; Ma J; Zhang L; Chen F; Sang Z; Jia Z; Ma L
    BMC Plant Biol; 2019 Jul; 19(1):321. PubMed ID: 31319815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Key Maize Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Inbred Lines.
    Zenda T; Liu S; Wang X; Liu G; Jin H; Dong A; Yang Y; Duan H
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30871211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De novo assembly of the desert tree Haloxylon ammodendron (C. A. Mey.) based on RNA-Seq data provides insight into drought response, gene discovery and marker identification.
    Long Y; Zhang J; Tian X; Wu S; Zhang Q; Zhang J; Dang Z; Pei XW
    BMC Genomics; 2014 Dec; 15(1):1111. PubMed ID: 25511667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted mining of drought stress-responsive genes from EST resources in Cleistogenes songorica.
    Zhang J; John UP; Wang Y; Li X; Gunawardana D; Polotnianka RM; Spangenberg GC; Nan Z
    J Plant Physiol; 2011 Oct; 168(15):1844-51. PubMed ID: 21684035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of drought and salt-stresses on gene expression in Caragana korshinskii seedlings revealed by RNA-seq.
    Li S; Fan C; Li Y; Zhang J; Sun J; Chen Y; Tian C; Su X; Lu M; Liang C; Hu Z
    BMC Genomics; 2016 Mar; 17():200. PubMed ID: 26951633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of differentially expressed genes and adaptive mechanisms of
    Liu J; Wang Y; Li Q
    Hereditas; 2017; 154():10. PubMed ID: 28484361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De Novo Assembly and Discovery of Genes That Involved in Drought Tolerance in the Common Vetch.
    Zhu Y; Liu Q; Xu W; Zhang J; Wang X; Nie G; Yao L; Wang H; Lin C
    Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30650531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo transcriptome sequencing and discovery of genes related to copper tolerance in Paeonia ostii.
    Wang Y; Dong C; Xue Z; Jin Q; Xu Y
    Gene; 2016 Jan; 576(1 Pt 1):126-35. PubMed ID: 26435192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo sequencing analysis of the Rosa roxburghii fruit transcriptome reveals putative ascorbate biosynthetic genes and EST-SSR markers.
    Yan X; Zhang X; Lu M; He Y; An H
    Gene; 2015 Apr; 561(1):54-62. PubMed ID: 25701597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome sequencing and whole genome expression profiling of chrysanthemum under dehydration stress.
    Xu Y; Gao S; Yang Y; Huang M; Cheng L; Wei Q; Fei Z; Gao J; Hong B
    BMC Genomics; 2013 Sep; 14():662. PubMed ID: 24074255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of stress-responsive genes in Ammopiptanthus mongolicus using ESTs generated from cold- and drought-stressed seedlings.
    Liu M; Shi J; Lu C
    BMC Plant Biol; 2013 Jun; 13():88. PubMed ID: 23734749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of genes involved in drought tolerance in seedlings of the desert grass, Psammochloa villosa (Poaceae), based on full-length isoform sequencing and de novo assembly from short reads.
    Liu T; Liu Y; Fu G; Chen J; Lv T; Su D; Wang Y; Hu X; Su X; Harris AJ
    J Plant Physiol; 2022 Apr; 271():153630. PubMed ID: 35193087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iris lactea var. chinensis plant drought tolerance depends on the response of proline metabolism, transcription factors, transporters and the ROS-scavenging system.
    Zhang Y; Zhang R; Song Z; Fu W; Yun L; Gao J; Hu G; Wang Z; Wu H; Zhang G; Wu J
    BMC Plant Biol; 2023 Jan; 23(1):17. PubMed ID: 36617566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomic Identification of Drought-Related Genes and SSR Markers in Sudan Grass Based on RNA-Seq.
    Zhu Y; Wang X; Huang L; Lin C; Zhang X; Xu W; Peng J; Li Z; Yan H; Luo F; Wang X; Yao L; Peng D
    Front Plant Sci; 2017; 8():687. PubMed ID: 28523007
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Ma C; Ma H; Xu G; Feng C; Ma L; Wang L
    J Genet; 2018 Sep; 97(4):995-999. PubMed ID: 30262712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Populus euphratica: the transcriptomic response to drought stress.
    Tang S; Liang H; Yan D; Zhao Y; Han X; Carlson JE; Xia X; Yin W
    Plant Mol Biol; 2013 Dec; 83(6):539-57. PubMed ID: 23857471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo transcriptome analysis of tobacco seedlings and identification of the early response gene network under low-potassium stress.
    Li LQ; Li J; Chen Y; Lu YF; Lu LM
    Genet Mol Res; 2016 Aug; 15(3):. PubMed ID: 27706558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.