These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 27930773)

  • 1. Penetration depth of photons in biological tissues from hyperspectral imaging in shortwave infrared in transmission and reflection geometries.
    Zhang H; Salo D; Kim DM; Komarov S; Tai YC; Berezin MY
    J Biomed Opt; 2016 Dec; 21(12):126006. PubMed ID: 27930773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Monte Carlo simulation-based photon migration for enhanced understanding of near-infrared (NIR) diffuse reflectance. Part I: Depth of penetration in pharmaceutical materials.
    Shi Z; Anderson CA
    J Pharm Sci; 2010 May; 99(5):2399-412. PubMed ID: 19967783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue.
    Alhamami M; Kolios MC; Tavakkoli J
    Med Phys; 2014 May; 41(5):053502. PubMed ID: 24784408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dependence of light scattering profile in tissue on blood vessel diameter and distribution: a computer simulation study.
    Duadi H; Fixler D; Popovtzer R
    J Biomed Opt; 2013 Nov; 18(11):111408. PubMed ID: 23887384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging wavelength and light penetration depth for water content distribution measurement of skin.
    Arimoto H; Egawa M
    Skin Res Technol; 2015 Feb; 21(1):94-100. PubMed ID: 25066529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. System analysis of spatial frequency domain imaging for quantitative mapping of surgically resected breast tissues.
    Laughney AM; Krishnaswamy V; Rice TB; Cuccia DJ; Barth RJ; Tromberg BJ; Paulsen KD; Pogue BW; Wells WA
    J Biomed Opt; 2013 Mar; 18(3):036012. PubMed ID: 23525360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstruction of optical scanned images of inhomogeneities in biological tissues by Monte Carlo simulation.
    Jeeva JB; Singh M
    Comput Biol Med; 2015 May; 60():92-9. PubMed ID: 25770705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues.
    Wang RK
    Phys Med Biol; 2002 Jul; 47(13):2281-99. PubMed ID: 12164587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new Monte Carlo code for light transport in biological tissue.
    Torres-GarcĂ­a E; Oros-Pantoja R; Aranda-Lara L; Vieyra-Reyes P
    Med Biol Eng Comput; 2018 Apr; 56(4):649-655. PubMed ID: 28849546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A New Method Based on Graphics Processing Units for Fast Near-Infrared Optical Tomography.
    Jiang J; Ahnen L; Kalyanov A; Lindner S; Wolf M; Majos SS
    Adv Exp Med Biol; 2017; 977():191-197. PubMed ID: 28685445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absorption by water increases fluorescence image contrast of biological tissue in the shortwave infrared.
    Carr JA; Aellen M; Franke D; So PTC; Bruns OT; Bawendi MG
    Proc Natl Acad Sci U S A; 2018 Sep; 115(37):9080-9085. PubMed ID: 30150372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multispectral imaging in the extended near-infrared window based on endogenous chromophores.
    Cao Q; Zhegalova NG; Wang ST; Akers WJ; Berezin MY
    J Biomed Opt; 2013 Oct; 18(10):101318. PubMed ID: 23933967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of Photon Path Length and Penetration Depth in Articular Cartilage Zonal Architecture Over the Therapeutic Window.
    Kafian-Attari I; Nippolainen E; Bergmann F; George A; Paakkari P; Mirhashemi A; Foschum F; Kienle A; Toyras J; Afara IO
    IEEE Trans Biomed Eng; 2024 Aug; 71(8):2300-2310. PubMed ID: 38748530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo Characterization of Short-Wave Infrared Optical Wavelengths for Biosensing Applications.
    Budidha K; Chatterjee S; Qassem M; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4285-4288. PubMed ID: 34892169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast imaging of high-resolution two-dimensional effective attenuation profile from diffuse reflectance.
    Tse J; Chen LK
    J Biomed Opt; 2012 Apr; 17(4):046005. PubMed ID: 22559683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light shadowing effect of large breast lesions imaged by optical tomography in reflection geometry.
    Xu C; Zhu Q
    J Biomed Opt; 2010; 15(3):036003. PubMed ID: 20615005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of skin optical parameters for real-time hyperspectral imaging applications.
    Bjorgan A; Milanic M; Randeberg LL
    J Biomed Opt; 2014 Jun; 19(6):066003. PubMed ID: 24898603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-resolved diffuse optical spectroscopy up to 1700 nm by means of a time-gated InGaAs/InP single-photon avalanche diode.
    Bargigia I; Tosi A; Bahgat Shehata A; Della Frera A; Farina A; Bassi A; Taroni P; Dalla Mora A; Zappa F; Cubeddu R; Pifferi A
    Appl Spectrosc; 2012 Aug; 66(8):944-50. PubMed ID: 22800436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depth profile of diffuse reflectance near-infrared spectroscopy for measurement of water content in skin.
    Arimoto H; Egawa M; Yamada Y
    Skin Res Technol; 2005 Feb; 11(1):27-35. PubMed ID: 15691256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depth sensitivity analysis of functional near-infrared spectroscopy measurement using three-dimensional Monte Carlo modelling-based magnetic resonance imaging.
    Mansouri C; L'huillier JP; Kashou NH; Humeau A
    Lasers Med Sci; 2010 May; 25(3):431-8. PubMed ID: 20143117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.