These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 27930885)

  • 61. A network biology approach to aging in yeast.
    Lorenz DR; Cantor CR; Collins JJ
    Proc Natl Acad Sci U S A; 2009 Jan; 106(4):1145-50. PubMed ID: 19164565
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A phenotypic profile of the Candida albicans regulatory network.
    Homann OR; Dea J; Noble SM; Johnson AD
    PLoS Genet; 2009 Dec; 5(12):e1000783. PubMed ID: 20041210
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Transcriptional regulation by competing transcription factor modules.
    Hermsen R; Tans S; ten Wolde PR
    PLoS Comput Biol; 2006 Dec; 2(12):e164. PubMed ID: 17140283
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Assessing regulatory features of the current transcriptional network of Saccharomyces cerevisiae.
    Monteiro PT; Pedreira T; Galocha M; Teixeira MC; Chaouiya C
    Sci Rep; 2020 Oct; 10(1):17744. PubMed ID: 33082399
    [TBL] [Abstract][Full Text] [Related]  

  • 65. On the basic computational structure of gene regulatory networks.
    Rodríguez-Caso C; Corominas-Murtra B; Solé RV
    Mol Biosyst; 2009 Dec; 5(12):1617-29. PubMed ID: 19763330
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Data-based model and parameter evaluation in dynamic transcriptional regulatory networks.
    Cavelier G; Anastassiou D
    Proteins; 2004 May; 55(2):339-50. PubMed ID: 15048826
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae.
    Ma M; Liu ZL
    BMC Genomics; 2010 Nov; 11():660. PubMed ID: 21106074
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Synthetic Biology of Yeast.
    Liu Z; Zhang Y; Nielsen J
    Biochemistry; 2019 Mar; 58(11):1511-1520. PubMed ID: 30618248
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Multi-study inference of regulatory networks for more accurate models of gene regulation.
    Castro DM; de Veaux NR; Miraldi ER; Bonneau R
    PLoS Comput Biol; 2019 Jan; 15(1):e1006591. PubMed ID: 30677040
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Additive functions in boolean models of gene regulatory network modules.
    Darabos C; Di Cunto F; Tomassini M; Moore JH; Provero P; Giacobini M
    PLoS One; 2011; 6(11):e25110. PubMed ID: 22132067
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Local genetic context shapes the function of a gene regulatory network.
    Nagy-Staron A; Tomasek K; Caruso Carter C; Sonnleitner E; Kavčič B; Paixão T; Guet CC
    Elife; 2021 Mar; 10():. PubMed ID: 33683203
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Inference of active transcriptional networks by integration of gene expression kinetics modeling and multisource data.
    Vu TT; Vohradsky J
    Genomics; 2009 May; 93(5):426-33. PubMed ID: 19442636
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Evolution of reduced co-activator dependence led to target expansion of a starvation response pathway.
    He BZ; Zhou X; O'Shea EK
    Elife; 2017 May; 6():. PubMed ID: 28485712
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Trigenic Synthetic Genetic Array (τ-SGA) Technique for Complex Interaction Analysis.
    Kuzmin E; Andrews BJ; Boone C
    Methods Mol Biol; 2021; 2212():377-400. PubMed ID: 33733368
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Predicting genetic interactions with random walks on biological networks.
    Chipman KC; Singh AK
    BMC Bioinformatics; 2009 Jan; 10():17. PubMed ID: 19138426
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Spatial organization of the transcriptional regulatory network of Saccharomyces cerevisiae.
    Sun DQ; Tian L; Ma BG
    FEBS Lett; 2019 Apr; 593(8):876-884. PubMed ID: 30908624
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Causal inference of regulator-target pairs by gene mapping of expression phenotypes.
    Kulp DC; Jagalur M
    BMC Genomics; 2006 May; 7():125. PubMed ID: 16719927
    [TBL] [Abstract][Full Text] [Related]  

  • 78. CoVar: A generalizable machine learning approach to identify the coordinated regulators driving variational gene expression.
    Roy S; Sheikh SZ; Furey TS
    PLoS Comput Biol; 2024 Apr; 20(4):e1012016. PubMed ID: 38630807
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Stochastic signalling rewires the interaction map of a multiple feedback network during yeast evolution.
    Hsu C; Scherrer S; Buetti-Dinh A; Ratna P; Pizzolato J; Jaquet V; Becskei A
    Nat Commun; 2012 Feb; 3():682. PubMed ID: 22353713
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Systematic inference of indirect transcriptional regulation by protein kinases and phosphatases.
    Madsen CD; Hein J; Workman CT
    PLoS Comput Biol; 2022 Jun; 18(6):e1009414. PubMed ID: 35731801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.