These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 27930968)

  • 21. In vivo-in vitro and XANES spectroscopy assessments of lead bioavailability in contaminated periurban soils.
    Smith E; Kempson IM; Juhasz AL; Weber J; Rofe A; Gancarz D; Naidu R; McLaren RG; Gräfe M
    Environ Sci Technol; 2011 Jul; 45(14):6145-52. PubMed ID: 21707121
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro digestion and DGT techniques for estimating cadmium and lead bioavailability in contaminated soils: influence of gastric juice pH.
    Pelfrêne A; Waterlot C; Douay F
    Sci Total Environ; 2011 Nov; 409(23):5076-85. PubMed ID: 21917297
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lead Speciation and In Vitro Bioaccessibility of Compost-Amended Urban Garden Soils.
    Attanayake CP; Hettiarachchi GM; Ma Q; Pierzynski GM; Ransom MD
    J Environ Qual; 2017 Nov; 46(6):1215-1224. PubMed ID: 29293834
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of SBRC-gastric and SBRC-intestinal methods for the prediction of in vivo relative lead bioavailability in contaminated soils.
    Juhasz AL; Weber J; Smith E; Naidu R; Marschner B; Rees M; Rofe A; Kuchel T; Sansom L
    Environ Sci Technol; 2009 Jun; 43(12):4503-9. PubMed ID: 19603669
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Risk assessment test for lead bioaccessibility to waterfowl in mine-impacted soils.
    Furman O; Strawn DG; Heinz GH; Williams B
    J Environ Qual; 2006; 35(2):450-8. PubMed ID: 16455845
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modelling Pb bioaccessibility in soils contaminated by mining and smelting activities.
    Caboche J; Denys S; Feidt C; Delalain P; Tack K; Rychen G
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Aug; 45(10):1264-74. PubMed ID: 20635294
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of lead bioaccessibility in peri-urban contaminated soils.
    Smith E; Weber J; Naidu R; McLaren RG; Juhasz AL
    J Hazard Mater; 2011 Feb; 186(1):300-5. PubMed ID: 21115224
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of dietary vitamins in oral bioaccessibility of lead in contaminated soils based on the physiologically based extraction test.
    Yin N; Han Z; Du H; Wang P; Li Y; Chen X; Sun G; Cui Y; Hu Z
    Sci Total Environ; 2020 Dec; 747():141299. PubMed ID: 32791414
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The source of lead determines the relationship between soil properties and lead bioaccessibility.
    Yan K; Dong Z; Wijayawardena MAA; Liu Y; Li Y; Naidu R
    Environ Pollut; 2019 Mar; 246():53-59. PubMed ID: 30529941
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Linking solid phase speciation of Pb sequestered to birnessite to oral Pb bioaccessibility: implications for soil remediation.
    Beak DG; Basta NT; Scheckel KG; Traina SJ
    Environ Sci Technol; 2008 Feb; 42(3):779-85. PubMed ID: 18323102
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioaccessibility tests accurately estimate bioavailability of lead to quail.
    Beyer WN; Basta NT; Chaney RL; Henry PF; Mosby DE; Rattner BA; Scheckel KG; Sprague DT; Weber JS
    Environ Toxicol Chem; 2016 Sep; 35(9):2311-9. PubMed ID: 26876015
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Arsenic bioaccessibility in CCA-contaminated soils: influence of soil properties, arsenic fractionation, and particle-size fraction.
    Girouard E; Zagury GJ
    Sci Total Environ; 2009 Apr; 407(8):2576-85. PubMed ID: 19211134
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pilot study of temporal variations in lead bioaccessibility and chemical fractionation in some Chinese soils.
    Tang XY; Cui YS; Duan J; Tang L
    J Hazard Mater; 2008 Dec; 160(1):29-36. PubMed ID: 18395339
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions.
    Cao X; Ma LQ; Singh SP; Zhou Q
    Environ Pollut; 2008 Mar; 152(1):184-92. PubMed ID: 17601642
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Digestive fluid components affect speciation and bioaccessibility and the subsequent exposure risk of soil chromium from stomach to intestinal phase in in-vitro gastrointestinal digestion.
    Qian Q; Liang J; Ren Z; Sima J; Xu X; Rinklebe J; Cao X
    J Hazard Mater; 2024 Feb; 463():132882. PubMed ID: 37939559
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sample drying effects on lead bioaccessibility in reduced soil.
    Furman O; Strawn DG; McGeehan S
    J Environ Qual; 2007; 36(3):899-903. PubMed ID: 17485722
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In Situ Fixation of Metal(loid)s in Contaminated Soils: A Comparison of Conventional, Opportunistic, and Engineered Soil Amendments.
    Mele E; Donner E; Juhasz AL; Brunetti G; Smith E; Betts AR; Castaldi P; Deiana S; Scheckel KG; Lombi E
    Environ Sci Technol; 2015 Nov; 49(22):13501-9. PubMed ID: 26457447
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of dosing vehicle on arsenic bioaccessibility in smelter-contaminated soils.
    Basta NT; Foster JN; Dayton EA; Rodriguez RR; Casteel SW
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jul; 42(9):1275-81. PubMed ID: 17654147
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Bioaccessibility of soil cadmium and its health risk assessment].
    Cui YS; Chen XC
    Huan Jing Ke Xue; 2010 Feb; 31(2):403-8. PubMed ID: 20391710
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of mercury speciation and fractionation on bioaccessibility in soils.
    Zagury GJ; Bedeaux C; Welfringer B
    Arch Environ Contam Toxicol; 2009 Apr; 56(3):371-9. PubMed ID: 18704252
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.