BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 27931874)

  • 1. Micro-Raman spectroscopic study of thyroid tissues.
    Medeiros Neto LP; das Chagas E Silva de Carvalho LF; Santos LD; Tellez Soto CA; de Azevedo Canevari R; de Oliveira Santos AB; Mello ES; Pereira MA; Cernea CR; Brandão LG; Martin AA
    Photodiagnosis Photodyn Ther; 2017 Mar; 17():164-172. PubMed ID: 27931874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic identification of benign (follicular adenoma) and cancerous lesions (follicular thyroid carcinoma) in thyroid tissues.
    Depciuch J; Stanek-Widera A; Skrzypiec D; Lange D; Biskup-Frużyńska M; Kiper K; Stanek-Tarkowska J; Kula M; Cebulski J
    J Pharm Biomed Anal; 2019 Jun; 170():321-326. PubMed ID: 30954022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thyroid tissue analysis through Raman spectroscopy.
    Teixeira CS; Bitar RA; Martinho HS; Santos AB; Kulcsar MA; Friguglietti CU; da Costa RB; Arisawa EA; Martin AA
    Analyst; 2009 Nov; 134(11):2361-70. PubMed ID: 19838427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RAMAN spectroscopy imaging improves the diagnosis of papillary thyroid carcinoma.
    Rau JV; Graziani V; Fosca M; Taffon C; Rocchia M; Crucitti P; Pozzilli P; Onetti Muda A; Caricato M; Crescenzi A
    Sci Rep; 2016 Oct; 6():35117. PubMed ID: 27725756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrimination of non-melanoma skin lesions from non-tumor human skin tissues in vivo using Raman spectroscopy and multivariate statistics.
    Silveira FL; Pacheco MT; Bodanese B; Pasqualucci CA; Zângaro RA; Silveira L
    Lasers Surg Med; 2015 Jan; 47(1):6-16. PubMed ID: 25583686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Filter-Membrane-Based Ultrafiltration Coupled with Surface-Enhanced Raman Spectroscopy for Potential Differentiation of Benign and Malignant Thyroid Tumors from Blood Plasma.
    Liang X; Miao X; Xiao W; Ye Q; Wang S; Lin J; Li C; Huang Z
    Int J Nanomedicine; 2020; 15():2303-2314. PubMed ID: 32280222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytomorphologic analysis of dyshormonogenetic goiter.
    Bhalekar S; Shetty D; Mhatre D; Bhalekar H
    Diagn Cytopathol; 2021 Nov; 49(11):E415-E418. PubMed ID: 34288592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neck nodular lesions mimicking thyroid tumors.
    Wojtczak B; Sutkowski K; Glod M; Czopnik P; Rzeszutko M; Jawiarczyk-Przybylowska A; Bolanowski M
    Neuro Endocrinol Lett; 2013; 34(7):606-9. PubMed ID: 24464009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diagnostic accuracy of thyroid aspirative cytology in view of cumulative experience.
    Malberger E; Kraus M; Lemberg S
    Isr J Med Sci; 1985 Sep; 21(9):713-8. PubMed ID: 4055333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-Infrared Spectroscopy for Distinguishing Malignancy in Thyroid Nodules.
    Zufry H; Munawar AA
    Appl Spectrosc; 2024 Jun; 78(6):627-632. PubMed ID: 38373401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphometric evaluation of histological sections of the thyroid gland in benign and malignant follicular lesions.
    De Santis M; Sciarretta F; Sudano L; Perrone Donnorso R
    Diagn Cytopathol; 1987 Mar; 3(1):60-7. PubMed ID: 3568974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Usefulness of fine needle aspiration of the thyroid in an endemic goiter region.
    Harach HR
    Acta Cytol; 1989; 33(1):31-5. PubMed ID: 2916369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Telomerase activity in "suspicious" thyroid cytology.
    Lerma E; Mora J
    Cancer; 2005 Dec; 105(6):492-7. PubMed ID: 16104043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of malignancy in solitary thyroid nodules.
    Kendall LW; Condon RE
    Lancet; 1969 May; 1(7605):1071-3. PubMed ID: 4181733
    [No Abstract]   [Full Text] [Related]  

  • 15. [Background diseases in thyroid cancer].
    Khachatryan A
    Georgian Med News; 2012 Feb; (203):7-11. PubMed ID: 22466533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micro-Raman spectroscopy study of cancerous and normal nasopharyngeal tissues.
    Li Y; Pan J; Chen G; Li C; Lin S; Shao Y; Feng S; Huang Z; Xie S; Zeng H; Chen R
    J Biomed Opt; 2013 Feb; 18(2):27003. PubMed ID: 23377010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrimination of serum Raman spectroscopy between normal and colorectal cancer using selected parameters and regression-discriminant analysis.
    Li X; Yang T; Li S
    Appl Opt; 2012 Jul; 51(21):5038-43. PubMed ID: 22858942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of morphometry in the differential diagnosis of fine-needle thyroid aspirates.
    Karslioğlu Y; Celasun B; Günhan O
    Cytometry B Clin Cytom; 2005 May; 65(1):22-8. PubMed ID: 15779051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiating normal and basal cell carcinoma human skin tissues in vitro using dispersive Raman spectroscopy: a comparison between principal components analysis and simplified biochemical models.
    Bodanese B; Silveira L; Albertini R; Zângaro RA; Pacheco MT
    Photomed Laser Surg; 2010 Aug; 28 Suppl 1():S119-27. PubMed ID: 20649423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A potential diagnostic application of magnetization transfer contrast: an in vitro NMR study of excised human thyroid tissues.
    Callicott C; Goode AW
    Phys Med Biol; 1998 Mar; 43(3):627-35. PubMed ID: 9533141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.