These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 27931937)
1. Influence of capillary barrier effect on biogas distribution at the base of passive methane oxidation biosystems: Parametric study. Ahoughalandari B; Cabral AR Waste Manag; 2017 May; 63():172-187. PubMed ID: 27931937 [TBL] [Abstract][Full Text] [Related]
2. Landfill gas distribution at the base of passive methane oxidation biosystems: Transient state analysis of several configurations. Ahoughalandari B; Cabral AR Waste Manag; 2017 Nov; 69():298-314. PubMed ID: 28826809 [TBL] [Abstract][Full Text] [Related]
3. Precipitation and evaporation affecting landfill gas migration into passive methane oxidation biosystems: Models development and verification. Sun M; Yu Y Waste Manag; 2024 Sep; 186():214-225. PubMed ID: 38936305 [TBL] [Abstract][Full Text] [Related]
4. Mitigating fugitive methane emissions from closed landfills: A pilot-scale field study. Nelson B; Zytner RG; Dulac Y; Cabral AR Sci Total Environ; 2022 Dec; 851(Pt 2):158351. PubMed ID: 36049680 [TBL] [Abstract][Full Text] [Related]
5. Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljø Landfill, Denmark: 2. Methane oxidation. Scheutz C; Cassini F; De Schoenmaeker J; Kjeldsen P Waste Manag; 2017 May; 63():203-212. PubMed ID: 28161333 [TBL] [Abstract][Full Text] [Related]
6. A fully coupled model for water-gas-heat reactive transport with methane oxidation in landfill covers. Ng CW; Feng S; Liu HW Sci Total Environ; 2015 Mar; 508():307-19. PubMed ID: 25489976 [TBL] [Abstract][Full Text] [Related]
7. A mass balance model to estimate the rate of composting, methane oxidation and anaerobic digestion in soil covers and shallow waste layers. Rafiee R; Obersky L; Xie S; Clarke WP Waste Manag; 2017 May; 63():196-202. PubMed ID: 28089399 [TBL] [Abstract][Full Text] [Related]
8. Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljø Landfill, Denmark: 1. System design and gas distribution. Cassini F; Scheutz C; Skov BH; Mou Z; Kjeldsen P Waste Manag; 2017 May; 63():213-225. PubMed ID: 28119037 [TBL] [Abstract][Full Text] [Related]
9. Compositional and physicochemical changes in waste materials and biogas production across 7 landfill sites in UK. Frank RR; Cipullo S; Garcia J; Davies S; Wagland ST; Villa R; Trois C; Coulon F Waste Manag; 2017 May; 63():11-17. PubMed ID: 27577751 [TBL] [Abstract][Full Text] [Related]
10. Use of a biologically active cover to reduce landfill methane emissions and enhance methane oxidation. Stern JC; Chanton J; Abichou T; Powelson D; Yuan L; Escoriza S; Bogner J Waste Manag; 2007; 27(9):1248-58. PubMed ID: 17005386 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of the efficiency of an experimental biocover to reduce BTEX emissions from landfill biogas. Lakhouit A; Schirmer WN; Johnson TR; Cabana H; Cabral AR Chemosphere; 2014 Feb; 97():98-101. PubMed ID: 24238915 [TBL] [Abstract][Full Text] [Related]
12. A simple and rapid in situ method for measuring landfill gas emissions and methane oxidation rates in landfill covers. Zhan LT; Wu T; Feng S; Lan JW; Chen YM Waste Manag Res; 2020 May; 38(5):588-593. PubMed ID: 31856695 [TBL] [Abstract][Full Text] [Related]
13. Quantification of parameters influencing methane generation due to biodegradation of municipal solid waste in landfills and laboratory experiments. Fei X; Zekkos D; Raskin L Waste Manag; 2016 Sep; 55():276-87. PubMed ID: 26525969 [TBL] [Abstract][Full Text] [Related]
14. Performance of green waste biocovers for enhancing methane oxidation. Mei C; Yazdani R; Han B; Mostafid ME; Chanton J; VanderGheynst J; Imhoff P Waste Manag; 2015 May; 39():205-15. PubMed ID: 25792440 [TBL] [Abstract][Full Text] [Related]
15. Design of top covers supporting aerobic in situ stabilization of old landfills--an experimental simulation in lysimeters. Hrad M; Huber-Humer M; Wimmer B; Reichenauer TG Waste Manag; 2012 Dec; 32(12):2324-35. PubMed ID: 22749719 [TBL] [Abstract][Full Text] [Related]
16. Methane oxidation and attenuation of sulphur compounds in landfill top cover systems: Lab-scale tests. Raga R; Pivato A; Lavagnolo MC; Megido L; Cossu R J Environ Sci (China); 2018 Mar; 65():317-326. PubMed ID: 29548403 [TBL] [Abstract][Full Text] [Related]
17. Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials. Rachor I; Gebert J; Gröngröft A; Pfeiffer EM Waste Manag; 2011 May; 31(5):833-42. PubMed ID: 21067907 [TBL] [Abstract][Full Text] [Related]
18. Numerical modelling of methane oxidation efficiency and coupled water-gas-heat reactive transfer in a sloping landfill cover. Feng S; Ng CWW; Leung AK; Liu HW Waste Manag; 2017 Oct; 68():355-368. PubMed ID: 28545891 [TBL] [Abstract][Full Text] [Related]
19. A comparative evaluation of the performance of full-scale high-rate methane biofilter (HMBF) systems and flow-through laboratory columns. Gunasekera SS; Hettiaratchi JP; Bartholameuz EM; Farrokhzadeh H; Irvine E Environ Sci Pollut Res Int; 2018 Dec; 25(36):35845-35854. PubMed ID: 30276693 [TBL] [Abstract][Full Text] [Related]
20. Induction of enhanced methane oxidation in compost: temperature and moisture response. Mor S; De Visscher A; Ravindra K; Dahiya RP; Chandra A; Van Cleemput O Waste Manag; 2006; 26(4):381-8. PubMed ID: 16446082 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]