BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 27932493)

  • 41. The Landscape of Mouse Meiotic Double-Strand Break Formation, Processing, and Repair.
    Lange J; Yamada S; Tischfield SE; Pan J; Kim S; Zhu X; Socci ND; Jasin M; Keeney S
    Cell; 2016 Oct; 167(3):695-708.e16. PubMed ID: 27745971
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Down the Penrose stairs, or how selection for fewer recombination hotspots maintains their existence.
    Baker Z; Przeworski M; Sella G
    Elife; 2023 Oct; 12():. PubMed ID: 37830496
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The histone modification reader ZCWPW1 links histone methylation to PRDM9-induced double-strand break repair.
    Huang T; Yuan S; Gao L; Li M; Yu X; Zhan J; Yin Y; Liu C; Zhang C; Lu G; Li W; Liu J; Chen ZJ; Liu H
    Elife; 2020 May; 9():. PubMed ID: 32374261
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Meiosis: a PRDM9 guide to the hotspots of recombination.
    Hochwagen A; Marais GA
    Curr Biol; 2010 Mar; 20(6):R271-4. PubMed ID: 20334833
    [No Abstract]   [Full Text] [Related]  

  • 45. [What defines the genetic map? The specification of meiotic recombination sites].
    Grey C; Sommermeyer V; Borde V; de Massy B
    Med Sci (Paris); 2011 Jan; 27(1):63-9. PubMed ID: 21299964
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The evolutionary turnover of recombination hot spots contributes to speciation in mice.
    Smagulova F; Brick K; Pu Y; Camerini-Otero RD; Petukhova GV
    Genes Dev; 2016 Feb; 30(3):266-80. PubMed ID: 26833728
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The histone modification reader ZCWPW1 promotes double-strand break repair by regulating cross-talk of histone modifications and chromatin accessibility at meiotic hotspots.
    Yuan S; Huang T; Bao Z; Wang S; Wu X; Liu J; Liu H; Chen ZJ
    Genome Biol; 2022 Sep; 23(1):187. PubMed ID: 36068616
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The case of the fickle fingers: how the PRDM9 zinc finger protein specifies meiotic recombination hotspots in humans.
    Ségurel L; Leffler EM; Przeworski M
    PLoS Biol; 2011 Dec; 9(12):e1001211. PubMed ID: 22162947
    [TBL] [Abstract][Full Text] [Related]  

  • 49. HELLS and PRDM9 form a pioneer complex to open chromatin at meiotic recombination hot spots.
    Spruce C; Dlamini S; Ananda G; Bronkema N; Tian H; Paigen K; Carter GW; Baker CL
    Genes Dev; 2020 Mar; 34(5-6):398-412. PubMed ID: 32001511
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genome-wide variability in recombination activity is associated with meiotic chromatin organization.
    Jin X; Fudenberg G; Pollard KS
    Genome Res; 2021 Sep; 31(9):1561-1572. PubMed ID: 34301629
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Prdm9 controls activation of mammalian recombination hotspots.
    Parvanov ED; Petkov PM; Paigen K
    Science; 2010 Feb; 327(5967):835. PubMed ID: 20044538
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Organization and roles of nucleosomes at mouse meiotic recombination hotspots.
    Getun IV; Wu ZK; Bois PR
    Nucleus; 2012; 3(3):244-50. PubMed ID: 22572955
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hybrid Sterility Locus on Chromosome X Controls Meiotic Recombination Rate in Mouse.
    Balcova M; Faltusova B; Gergelits V; Bhattacharyya T; Mihola O; Trachtulec Z; Knopf C; Fotopulosova V; Chvatalova I; Gregorova S; Forejt J
    PLoS Genet; 2016 Apr; 12(4):e1005906. PubMed ID: 27104744
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Histone methyltransferase PRDM9 is not essential for meiosis in male mice.
    Mihola O; Pratto F; Brick K; Linhartova E; Kobets T; Flachs P; Baker CL; Sedlacek R; Paigen K; Petkov PM; Camerini-Otero RD; Trachtulec Z
    Genome Res; 2019 Jul; 29(7):1078-1086. PubMed ID: 31186301
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genetic recombination variation in wild Robertsonian mice: on the role of chromosomal fusions and Prdm9 allelic background.
    Capilla L; Medarde N; Alemany-Schmidt A; Oliver-Bonet M; Ventura J; Ruiz-Herrera A
    Proc Biol Sci; 2014 Jul; 281(1786):. PubMed ID: 24850922
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mouse ANKRD31 Regulates Spatiotemporal Patterning of Meiotic Recombination Initiation and Ensures Recombination between X and Y Sex Chromosomes.
    Papanikos F; Clément JAJ; Testa E; Ravindranathan R; Grey C; Dereli I; Bondarieva A; Valerio-Cabrera S; Stanzione M; Schleiffer A; Jansa P; Lustyk D; Fei JF; Adams IR; Forejt J; Barchi M; de Massy B; Toth A
    Mol Cell; 2019 Jun; 74(5):1069-1085.e11. PubMed ID: 31000436
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Aberrant
    Houle AA; Gibling H; Lamaze FC; Edgington HA; Soave D; Fave MJ; Agbessi M; Bruat V; Stein LD; Awadalla P
    Genome Res; 2018 Nov; 28(11):1611-1620. PubMed ID: 30341163
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pioneering meiotic recombination.
    Alavattam KG; Abe H; Namekawa SH
    Genes Dev; 2020 Mar; 34(5-6):395-397. PubMed ID: 32122967
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation.
    de Vries FA; de Boer E; van den Bosch M; Baarends WM; Ooms M; Yuan L; Liu JG; van Zeeland AA; Heyting C; Pastink A
    Genes Dev; 2005 Jun; 19(11):1376-89. PubMed ID: 15937223
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chromatin accessibility shapes meiotic recombination in mouse primordial germ cells through assisting double-strand breaks and loop formation.
    Liu G; Sun Y; Jia L; Li R; Zuo Y
    Biochim Biophys Acta Gene Regul Mech; 2022 Jul; 1865(5):194844. PubMed ID: 35870788
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.