BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 27932531)

  • 1. Development of Type 2 Diabetes Mellitus Phenotyping Framework Using Expert Knowledge and Machine Learning Approach.
    Kagawa R; Kawazoe Y; Ida Y; Shinohara E; Tanaka K; Imai T; Ohe K
    J Diabetes Sci Technol; 2017 Jul; 11(4):791-799. PubMed ID: 27932531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A machine learning-based framework to identify type 2 diabetes through electronic health records.
    Zheng T; Xie W; Xu L; He X; Zhang Y; You M; Yang G; Chen Y
    Int J Med Inform; 2017 Jan; 97():120-127. PubMed ID: 27919371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Type2 diabetes mellitus prediction using data mining algorithms based on the long-noncoding RNAs expression: a comparison of four data mining approaches.
    Kazerouni F; Bayani A; Asadi F; Saeidi L; Parvizi N; Mansoori Z
    BMC Bioinformatics; 2020 Aug; 21(1):372. PubMed ID: 32854616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applying active learning to high-throughput phenotyping algorithms for electronic health records data.
    Chen Y; Carroll RJ; Hinz ER; Shah A; Eyler AE; Denny JC; Xu H
    J Am Med Inform Assoc; 2013 Dec; 20(e2):e253-9. PubMed ID: 23851443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic health record phenotyping improves detection and screening of type 2 diabetes in the general United States population: A cross-sectional, unselected, retrospective study.
    Anderson AE; Kerr WT; Thames A; Li T; Xiao J; Cohen MS
    J Biomed Inform; 2016 Apr; 60():162-8. PubMed ID: 26707455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an automated phenotyping algorithm for hepatorenal syndrome.
    Koola JD; Davis SE; Al-Nimri O; Parr SK; Fabbri D; Malin BA; Ho SB; Matheny ME
    J Biomed Inform; 2018 Apr; 80():87-95. PubMed ID: 29530803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying diagnostic indicators for type 2 diabetes mellitus from physical examination using interpretable machine learning approach.
    Lv X; Luo J; Huang W; Guo H; Bai X; Yan P; Jiang Z; Zhang Y; Jing R; Chen Q; Li M
    Front Endocrinol (Lausanne); 2024; 15():1376220. PubMed ID: 38562414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PheMap: a multi-resource knowledge base for high-throughput phenotyping within electronic health records.
    Zheng NS; Feng Q; Kerchberger VE; Zhao J; Edwards TL; Cox NJ; Stein CM; Roden DM; Denny JC; Wei WQ
    J Am Med Inform Assoc; 2020 Nov; 27(11):1675-1687. PubMed ID: 32974638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relational machine learning for electronic health record-driven phenotyping.
    Peissig PL; Santos Costa V; Caldwell MD; Rottscheit C; Berg RL; Mendonca EA; Page D
    J Biomed Inform; 2014 Dec; 52():260-70. PubMed ID: 25048351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of machine learning algorithms for the identification of acute exacerbations in chronic obstructive pulmonary disease.
    Wang C; Chen X; Du L; Zhan Q; Yang T; Fang Z
    Comput Methods Programs Biomed; 2020 May; 188():105267. PubMed ID: 31841787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surrogate-assisted feature extraction for high-throughput phenotyping.
    Yu S; Chakrabortty A; Liao KP; Cai T; Ananthakrishnan AN; Gainer VS; Churchill SE; Szolovits P; Murphy SN; Kohane IS; Cai T
    J Am Med Inform Assoc; 2017 Apr; 24(e1):e143-e149. PubMed ID: 27632993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning for the Prediction of New-Onset Diabetes Mellitus during 5-Year Follow-up in Non-Diabetic Patients with Cardiovascular Risks.
    Choi BG; Rha SW; Kim SW; Kang JH; Park JY; Noh YK
    Yonsei Med J; 2019 Feb; 60(2):191-199. PubMed ID: 30666841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of supervised machine learning algorithms for classification and prediction of type-2 diabetes disease status in Afar regional state, Northeastern Ethiopia 2021.
    Ebrahim OA; Derbew G
    Sci Rep; 2023 May; 13(1):7779. PubMed ID: 37179444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine-learning algorithms in screening for type 2 diabetes mellitus: Data from Fasa Adults Cohort Study.
    Karmand H; Andishgar A; Tabrizi R; Sadeghi A; Pezeshki B; Ravankhah M; Taherifard E; Ahmadizar F
    Endocrinol Diabetes Metab; 2024 Mar; 7(2):e00472. PubMed ID: 38411386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feature extraction for phenotyping from semantic and knowledge resources.
    Ning W; Chan S; Beam A; Yu M; Geva A; Liao K; Mullen M; Mandl KD; Kohane I; Cai T; Yu S
    J Biomed Inform; 2019 Mar; 91():103122. PubMed ID: 30738949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating resources composing the PheMAP knowledge base to enhance high-throughput phenotyping.
    Wan NC; Yaqoob AA; Ong HH; Zhao J; Wei WQ
    J Am Med Inform Assoc; 2023 Feb; 30(3):456-465. PubMed ID: 36451277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance analysis and prediction of type 2 diabetes mellitus based on lifestyle data using machine learning approaches.
    Ganie SM; Malik MB; Arif T
    J Diabetes Metab Disord; 2022 Jun; 21(1):339-352. PubMed ID: 35673418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HPO2Vec+: Leveraging heterogeneous knowledge resources to enrich node embeddings for the Human Phenotype Ontology.
    Shen F; Peng S; Fan Y; Wen A; Liu S; Wang Y; Wang L; Liu H
    J Biomed Inform; 2019 Aug; 96():103246. PubMed ID: 31255713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical phenotyping in selected national networks: demonstrating the need for high-throughput, portable, and computational methods.
    Richesson RL; Sun J; Pathak J; Kho AN; Denny JC
    Artif Intell Med; 2016 Jul; 71():57-61. PubMed ID: 27506131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Bayesian latent class approach for EHR-based phenotyping.
    Hubbard RA; Huang J; Harton J; Oganisian A; Choi G; Utidjian L; Eneli I; Bailey LC; Chen Y
    Stat Med; 2019 Jan; 38(1):74-87. PubMed ID: 30252148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.