These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 27933033)

  • 41. Cingulate lesions and behavioral adaptation to amino acid imbalanced diets.
    Meliza LL; Leung PM; Rogers QR
    Physiol Behav; 1983 Feb; 30(2):243-6. PubMed ID: 6405412
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Altered metabolic homeostasis is associated with appetite regulation during and following 48-h of severe energy deprivation in adults.
    Karl JP; Smith TJ; Wilson MA; Bukhari AS; Pasiakos SM; McClung HL; McClung JP; Lieberman HR
    Metabolism; 2016 Apr; 65(4):416-27. PubMed ID: 26975533
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The histaminergic system as a target for the prevention of obesity and metabolic syndrome.
    Provensi G; Blandina P; Passani MB
    Neuropharmacology; 2016 Jul; 106():3-12. PubMed ID: 26164344
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Control of food intake by fatty acid oxidation and ketogenesis.
    Scharrer E
    Nutrition; 1999 Sep; 15(9):704-14. PubMed ID: 10467616
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regulation of feeding behavior and food intake by appetite-regulating peptides in wild-type and growth hormone-transgenic coho salmon.
    White SL; Volkoff H; Devlin RH
    Horm Behav; 2016 Aug; 84():18-28. PubMed ID: 27149948
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Changes in free amino acid and monoamine concentrations in the chick brain associated with feeding behavior.
    Tran PV; Chowdhury VS; Nagasawa M; Furuse M
    Springerplus; 2015; 4():252. PubMed ID: 26191470
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Peripheral signals affecting food intake.
    Stubbs RJ
    Nutrition; 1999; 15(7-8):614-25. PubMed ID: 10422099
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Melanocortin mediated inhibition of feeding behavior in rats.
    Murphy B; Nunes CN; Ronan JJ; Harper CM; Beall MJ; Hanaway M; Fairhurst AM; Van der Ploeg LH; MacIntyre DE; Mellin TN
    Neuropeptides; 1998 Dec; 32(6):491-7. PubMed ID: 9920446
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Role of cholecystokinin and opioid peptides in control of food intake.
    Baile CA; McLaughlin CL; Della-Fera MA
    Physiol Rev; 1986 Jan; 66(1):172-234. PubMed ID: 2868468
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Satiety and memory enhancing effects of a high-protein meal depend on the source of protein.
    Du K; Markus E; Fecych M; Rhodes JS; Beverly JL
    Nutr Neurosci; 2018 May; 21(4):257-267. PubMed ID: 28091281
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The plasma amino acid response to cafeteria feeding in the rat: influence of hyperphagia, sucrose intake, and exercise.
    Calles-Escandon J; Cunningham J; Felig P
    Metabolism; 1984 Apr; 33(4):364-8. PubMed ID: 6584707
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ghrelin signaling in the ventral tegmental area mediates both reward-based feeding and fasting-induced hyperphagia on high-fat diet.
    Wei XJ; Sun B; Chen K; Lv B; Luo X; Yan JQ
    Neuroscience; 2015 Aug; 300():53-62. PubMed ID: 25967263
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Neural mechanisms in the responses to amino acid deficiency.
    Gietzen DW
    J Nutr; 1993 Apr; 123(4):610-25. PubMed ID: 8463862
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cerebrospinal fluid concentrations of large neutral and basic amino acids in Macaca mulatta: diurnal variations and responses to chronic changes in dietary protein intake.
    Grimes MA; Cameron JL; Fernstrom JD
    Metabolism; 2009 Jan; 58(1):129-40. PubMed ID: 19059540
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dietary protein reduction in sheep and goats: different effects on L-alanine and L-leucine transport across the brush-border membrane of jejunal enterocytes.
    Schröder B; Schöneberger M; Rodehutscord M; Pfeffer E; Breves G
    J Comp Physiol B; 2003 Aug; 173(6):511-8. PubMed ID: 12811487
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of hippocampal lesions on adaptive intake of diets with disproportionate amounts of amino acids.
    Leung PM; Rogers QR
    Physiol Behav; 1979 Jul; 23(1):129-36. PubMed ID: 515202
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Protein intake, brain amino acid and serotonin concentrations and protein self-selection.
    Harper AE; Peters JC
    J Nutr; 1989 May; 119(5):677-89. PubMed ID: 2656935
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Central regulators of food intake.
    Druce M; Bloom SR
    Curr Opin Clin Nutr Metab Care; 2003 Jul; 6(4):361-7. PubMed ID: 12806207
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ghrelin in Senegalese sole (Solea senegalensis) post-larvae: Paracrine effects on food intake.
    Navarro-Guillén C; Yúfera M; Engrola S
    Comp Biochem Physiol A Mol Integr Physiol; 2017 Feb; 204():85-92. PubMed ID: 27842223
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Food-induced brain responses and eating behaviour.
    Smeets PA; Charbonnier L; van Meer F; van der Laan LN; Spetter MS
    Proc Nutr Soc; 2012 Nov; 71(4):511-20. PubMed ID: 22931854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.