BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 27933085)

  • 1. Plant Physiological, Morphological and Yield-Related Responses to Night Temperature Changes across Different Species and Plant Functional Types.
    Jing P; Wang D; Zhu C; Chen J
    Front Plant Sci; 2016; 7():1774. PubMed ID: 27933085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Night temperature and source-sink effects on overall growth, cell number and cell size in bell pepper ovaries.
    Darnell RL; Cruz-Huerta N; Williamson JG
    Ann Bot; 2012 Oct; 110(5):987-94. PubMed ID: 22933415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential physiological responses of different rice (Oryza sativa) cultivars to elevated night temperature during vegetative growth.
    Glaubitz U; Li X; K Hl KI; van Dongen JT; Hincha DK; Zuther E
    Funct Plant Biol; 2014 Apr; 41(4):437-448. PubMed ID: 32481003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate warming and biomass accumulation of terrestrial plants: a meta-analysis.
    Lin D; Xia J; Wan S
    New Phytol; 2010 Oct; 188(1):187-98. PubMed ID: 20609113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Warming Treatment Methodology Affected the Response of Plant Ecophysiological Traits to Temperature Increases: A Quantitive Meta-Analysis.
    Wang D; Wang H; Wang P; Ling T; Tao W; Yang Z
    Front Plant Sci; 2019; 10():957. PubMed ID: 31552059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological and molecular attributes contribute to high night temperature tolerance in cereals.
    Schaarschmidt S; Lawas LMF; Kopka J; Jagadish SVK; Zuther E
    Plant Cell Environ; 2021 Jul; 44(7):2034-2048. PubMed ID: 33764557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-flowering night respiration and altered sink activity account for high night temperature-induced grain yield and quality loss in rice (Oryza sativa L.).
    Bahuguna RN; Solis CA; Shi W; Jagadish KS
    Physiol Plant; 2017 Jan; 159(1):59-73. PubMed ID: 27513992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation.
    Peng S; Piao S; Ciais P; Myneni RB; Chen A; Chevallier F; Dolman AJ; Janssens IA; Peñuelas J; Zhang G; Vicca S; Wan S; Wang S; Zeng H
    Nature; 2013 Sep; 501(7465):88-92. PubMed ID: 24005415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seasonally different response of photosynthetic activity to daytime and night-time warming in the Northern Hemisphere.
    Tan J; Piao S; Chen A; Zeng Z; Ciais P; Janssens IA; Mao J; Myneni RB; Peng S; Peñuelas J; Shi X; Vicca S
    Glob Chang Biol; 2015 Jan; 21(1):377-87. PubMed ID: 25163596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation.
    Yamori W; Hikosaka K; Way DA
    Photosynth Res; 2014 Feb; 119(1-2):101-17. PubMed ID: 23801171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved cyber-physical system captured post-flowering high night temperature impact on yield and quality of field grown wheat.
    Hein NT; Bheemanahalli R; Wagner D; Vennapusa AR; Bustamante C; Ostmeyer T; Pokharel M; Chiluwal A; Fu J; Srikanthan DS; Neilsen ML; Jagadish SVK
    Sci Rep; 2020 Dec; 10(1):22213. PubMed ID: 33335185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. General patterns of acclimation of leaf respiration to elevated temperatures across biomes and plant types.
    Slot M; Kitajima K
    Oecologia; 2015 Mar; 177(3):885-900. PubMed ID: 25481817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A meta-analysis of plant physiological and growth responses to temperature and elevated CO(2).
    Wang D; Heckathorn SA; Wang X; Philpott SM
    Oecologia; 2012 May; 169(1):1-13. PubMed ID: 22037993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction in seed set upon exposure to high night temperature during flowering in maize.
    Wang Y; Tao H; Zhang P; Hou X; Sheng D; Tian B; Wang P; Huang S
    Physiol Plant; 2020 May; 169(1):73-82. PubMed ID: 31747055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photosynthetic and respiratory acclimation and growth response of Antarctic vascular plants to contrasting temperature regimes.
    Xiong FS; Mueller EC; Day TA
    Am J Bot; 2000 May; 87(5):700-10. PubMed ID: 10811794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What happens at night? Physiological mechanisms related to maintaining grain yield under high night temperature in rice.
    Xu J; Misra G; Sreenivasulu N; Henry A
    Plant Cell Environ; 2021 Jul; 44(7):2245-2261. PubMed ID: 33715176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential Mechanisms of Potato Yield Loss Induced by High Day and Night Temperatures During Tuber Initiation and Bulking: Photosynthesis and Tuber Growth.
    Kim YU; Lee BW
    Front Plant Sci; 2019; 10():300. PubMed ID: 30923532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Narrowing Diurnal Temperature Amplitude Alters Carbon Tradeoff and Reduces Growth in C
    Sunoj VSJ; Prasad PVV; Ciampitti IA; Maswada HF
    Front Plant Sci; 2020; 11():1262. PubMed ID: 32973831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon balance and source-sink metabolic changes in winter wheat exposed to high night-time temperature.
    Impa SM; Sunoj VSJ; Krassovskaya I; Bheemanahalli R; Obata T; Jagadish SVK
    Plant Cell Environ; 2019 Apr; 42(4):1233-1246. PubMed ID: 30471235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High night temperature stress on rice (
    Riaz A; Thomas J; Ali HH; Zaheer MS; Ahmad N; Pereira A
    Funct Plant Biol; 2024 May; 51():. PubMed ID: 38815128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.