These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 27933243)

  • 1. Model-based extended quaternion Kalman filter to inertial orientation tracking of arbitrary kinematic chains.
    Szczęsna A; Pruszowski P
    Springerplus; 2016; 5(1):1965. PubMed ID: 27933243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A New Quaternion-Based Kalman Filter for Human Body Motion Tracking Using the Second Estimator of the Optimal Quaternion Algorithm and the Joint Angle Constraint Method with Inertial and Magnetic Sensors.
    Duan Y; Zhang X; Li Z
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33113983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On Inertial Body Tracking in the Presence of Model Calibration Errors.
    Miezal M; Taetz B; Bleser G
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27455266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating Three-Dimensional Body Orientation Based on an Improved Complementary Filter for Human Motion Tracking.
    Yi C; Ma J; Guo H; Han J; Gao H; Jiang F; Yang C
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30400359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kalman-filter-based orientation determination using inertial/magnetic sensors: observability analysis and performance evaluation.
    Sabatini AM
    Sensors (Basel); 2011; 11(10):9182-206. PubMed ID: 22163689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Full-State Robust Extended Kalman Filter for Orientation Tracking During Long-Duration Dynamic Tasks Using Magnetic and Inertial Measurement Units.
    Nazarahari M; Rouhani H
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1280-1289. PubMed ID: 34181546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetometer-free Realtime Inertial Motion Tracking by Exploitation of Kinematic Constraints in 2-DoF Joints.
    Laidig D; Lehmann D; Begin MA; Seel T
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1233-1238. PubMed ID: 31946115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing.
    Sabatini AM
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1346-56. PubMed ID: 16830938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Fuzzy Tuned and Second Estimator of the Optimal Quaternion Complementary Filter for Human Motion Measurement with Inertial and Magnetic Sensors.
    Zhang X; Xiao W
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30340400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human Arm Motion Tracking by Orientation-Based Fusion of Inertial Sensors and Kinect Using Unscented Kalman Filter.
    Atrsaei A; Salarieh H; Alasty A
    J Biomech Eng; 2016 Sep; 138(9):. PubMed ID: 27428461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A New Multi-Sensor Fusion Scheme to Improve the Accuracy of Knee Flexion Kinematics for Functional Rehabilitation Movements.
    Tannous H; Istrate D; Benlarbi-Delai A; Sarrazin J; Gamet D; Ho Ba Tho MC; Dao TT
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27854288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fusing inertial sensor data in an extended Kalman filter for 3D camera tracking.
    Erdem AT; Ercan AÖ
    IEEE Trans Image Process; 2015 Feb; 24(2):538-48. PubMed ID: 25531951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. INS/GNSS Tightly-Coupled Integration Using Quaternion-Based AUPF for USV.
    Xia G; Wang G
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27490551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tracking the motion of hidden segments using kinematic constraints and Kalman filtering.
    Halvorsen K; Johnston C; Back W; Stokes V; Lanshammar H
    J Biomech Eng; 2008 Feb; 130(1):011012. PubMed ID: 18298188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attitude Estimation Algorithm of Portable Mobile Robot Based on Complementary Filter.
    Liu M; Cai Y; Zhang L; Wang Y
    Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust and Accurate Capture of Human Joint Pose Using an Inertial Sensor.
    Pathirana PN; Karunarathne MS; Williams GL; Nam PT; Durrant-Whyte H
    IEEE J Transl Eng Health Med; 2018; 6():2700913. PubMed ID: 30456000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quaternion-Based Local Frame Alignment between an Inertial Measurement Unit and a Motion Capture System.
    Lee JK; Jung WC
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30453576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Body sensor network-based strapdown orientation estimation: application to human locomotion.
    Misgeld BJ; Rüschen D; Kim S; Leonhardt S
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650480. PubMed ID: 24187297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification and fixed-point analysis of a Kalman filter for orientation estimation based on 9D inertial measurement unit data.
    Brückner HP; Spindeldreier C; Blume H
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3953-6. PubMed ID: 24110597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Noise Covariance Matrices to Improve Orientation Estimation by Kalman Filter.
    Nez A; Fradet L; Marin F; Monnet T; Lacouture P
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30332842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.