BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 27933365)

  • 1. Ketamine decreases sensitivity of male rats to misleading negative feedback in a probabilistic reversal-learning task.
    Rychlik M; Bollen E; Rygula R
    Psychopharmacology (Berl); 2017 Feb; 234(4):613-620. PubMed ID: 27933365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of cognitive judgement bias and acute antidepressant treatment on sensitivity to feedback and cognitive flexibility in the rat version of the probabilistic reversal-learning test.
    Drozd R; Rychlik M; Fijalkowska A; Rygula R
    Behav Brain Res; 2019 Feb; 359():619-629. PubMed ID: 30292902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ketamine Corrects Stress-Induced Cognitive Dysfunction through JAK2/STAT3 Signaling in the Orbitofrontal Cortex.
    Patton MS; Lodge DJ; Morilak DA; Girotti M
    Neuropsychopharmacology; 2017 May; 42(6):1220-1230. PubMed ID: 27748739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of conventional and rapid-acting antidepressants in a rodent probabilistic reversal learning task.
    Wilkinson MP; Grogan JP; Mellor JR; Robinson ESJ
    Brain Neurosci Adv; 2020; 4():2398212820907177. PubMed ID: 32219179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ketamine produces no detectable long-term positive or negative effects on cognitive flexibility or reinforcement learning of male rats.
    Nist AN; Walsh SJ; Shahan TA
    Psychopharmacology (Berl); 2024 Apr; 241(4):849-863. PubMed ID: 38062167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity to negative and positive feedback as a stable and enduring behavioural trait in rats.
    Noworyta-Sokolowska K; Kozub A; Jablonska J; Rodriguez Parkitna J; Drozd R; Rygula R
    Psychopharmacology (Berl); 2019 Aug; 236(8):2389-2403. PubMed ID: 31375849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subchronic anesthetic ketamine injections in rats impair choice reversal learning, but have no effect on reinforcer devaluation.
    Pickens CL; Aurand L; Hunt J; Fisher H
    Behav Pharmacol; 2017 Jun; 28(4):294-302. PubMed ID: 28118210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ketamine, but not MK-801, produces antidepressant-like effects in rats responding on a differential-reinforcement-of-low-rate operant schedule.
    Hillhouse TM; Porter JH
    Behav Pharmacol; 2014 Feb; 25(1):80-91. PubMed ID: 24370559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antidepressant, anxiolytic and procognitive effects of subacute and chronic ketamine in the chronic mild stress model of depression.
    Papp M; Gruca P; Lason-Tyburkiewicz M; Willner P
    Behav Pharmacol; 2017 Feb; 28(1):1-8. PubMed ID: 27759570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trait "pessimism" is associated with increased sensitivity to negative feedback in rats.
    Rygula R; Popik P
    Cogn Affect Behav Neurosci; 2016 Jun; 16(3):516-26. PubMed ID: 26902303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the Psychopharmacological Effects of Tiletamine and Ketamine in Rodents.
    Popik P; Hołuj M; Kos T; Nowak G; Librowski T; Sałat K
    Neurotox Res; 2017 Nov; 32(4):544-554. PubMed ID: 28577066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antidepressant Potential of (
    Fukumoto K; Toki H; Iijima M; Hashihayata T; Yamaguchi JI; Hashimoto K; Chaki S
    J Pharmacol Exp Ther; 2017 Apr; 361(1):9-16. PubMed ID: 28115553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anxiolytic- and antidepressant-like properties of ketamine in behavioral and neurophysiological animal models.
    Engin E; Treit D; Dickson CT
    Neuroscience; 2009 Jun; 161(2):359-69. PubMed ID: 19321151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translational Assessments of Reward Responsiveness in the Marmoset.
    Wooldridge LM; Bergman J; Pizzagalli DA; Kangas BD
    Int J Neuropsychopharmacol; 2021 May; 24(5):409-418. PubMed ID: 33280005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pain sensitivity is altered in animals after subchronic ketamine treatment.
    Becker A; Grecksch G; Schröder H
    Psychopharmacology (Berl); 2006 Dec; 189(2):237-47. PubMed ID: 17016710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pedunculopontine tegmental nucleus lesions impair probabilistic reversal learning by reducing sensitivity to positive reward feedback.
    Syed A; Baker PM; Ragozzino ME
    Neurobiol Learn Mem; 2016 May; 131():1-8. PubMed ID: 26976089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probabilistic Reversal Learning in Schizophrenia: Stability of Deficits and Potential Causal Mechanisms.
    Reddy LF; Waltz JA; Green MF; Wynn JK; Horan WP
    Schizophr Bull; 2016 Jul; 42(4):942-51. PubMed ID: 26884546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of risperidone, clozapine and the 5-HT6 antagonist GSK-742457 on PCP-induced deficits in reversal learning in the two-lever operant task in male Sprague Dawley rats.
    de Bruin NM; van Drimmelen M; Kops M; van Elk J; Wetering MM; Schwienbacher I
    Behav Brain Res; 2013 May; 244():15-28. PubMed ID: 23384714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Hippocampal Neurons Mature Rapidly in Response to Ketamine But Are Not Required for Its Acute Antidepressant Effects on Neophagia in Rats.
    Soumier A; Carter RM; Schoenfeld TJ; Cameron HA
    eNeuro; 2016; 3(2):. PubMed ID: 27066531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antidepressant-like cognitive and behavioral effects of acute ketamine administration associated with plasticity in the ventral hippocampus to medial prefrontal cortex pathway.
    Jett JD; Boley AM; Girotti M; Shah A; Lodge DJ; Morilak DA
    Psychopharmacology (Berl); 2015 Sep; 232(17):3123-33. PubMed ID: 25986748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.