BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 27933526)

  • 21. Genetic and Epigenetic Fine Mapping of Complex Trait Associated Loci in the Human Liver.
    Çalışkan M; Manduchi E; Rao HS; Segert JA; Beltrame MH; Trizzino M; Park Y; Baker SW; Chesi A; Johnson ME; Hodge KM; Leonard ME; Loza B; Xin D; Berrido AM; Hand NJ; Bauer RC; Wells AD; Olthoff KM; Shaked A; Rader DJ; Grant SFA; Brown CD
    Am J Hum Genet; 2019 Jul; 105(1):89-107. PubMed ID: 31204013
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Studying the epigenome using next generation sequencing.
    Ku CS; Naidoo N; Wu M; Soong R
    J Med Genet; 2011 Nov; 48(11):721-30. PubMed ID: 21825079
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DeepHistone: a deep learning approach to predicting histone modifications.
    Yin Q; Wu M; Liu Q; Lv H; Jiang R
    BMC Genomics; 2019 Apr; 20(Suppl 2):193. PubMed ID: 30967126
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Epigenetics and Epigenomics of Plants.
    Yadav CB; Pandey G; Muthamilarasan M; Prasad M
    Adv Biochem Eng Biotechnol; 2018; 164():237-261. PubMed ID: 29356846
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Practical Guidelines for High-Resolution Epigenomic Profiling of Nucleosomal Histones in Postmortem Human Brain Tissue.
    Kundakovic M; Jiang Y; Kavanagh DH; Dincer A; Brown L; Pothula V; Zharovsky E; Park R; Jacobov R; Magro I; Kassim B; Wiseman J; Dang K; Sieberts SK; Roussos P; Fromer M; Harris B; Lipska BK; Peters MA; Sklar P; Akbarian S
    Biol Psychiatry; 2017 Jan; 81(2):162-170. PubMed ID: 27113501
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Statistical Methods for Transcriptome-Wide Analysis of RNA Methylation by Bisulfite Sequencing.
    Parker BJ
    Methods Mol Biol; 2017; 1562():155-167. PubMed ID: 28349460
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient library preparation for next-generation sequencing analysis of genome-wide epigenetic and transcriptional landscapes in embryonic stem cells.
    Kidder BL; Zhao K
    Methods Mol Biol; 2014; 1150():3-20. PubMed ID: 24743988
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Natural variation of histone modification and its impact on gene expression in the rat genome.
    Rintisch C; Heinig M; Bauerfeind A; Schafer S; Mieth C; Patone G; Hummel O; Chen W; Cook S; Cuppen E; Colomé-Tatché M; Johannes F; Jansen RC; Neil H; Werner M; Pravenec M; Vingron M; Hubner N
    Genome Res; 2014 Jun; 24(6):942-53. PubMed ID: 24793478
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of Epigenetic Modifications During Vegetative and Reproductive Development in Cereals Using Chromatin Immunoprecipitation (ChIP).
    Begcy K; Dresselhaus T
    Methods Mol Biol; 2020; 2072():141-156. PubMed ID: 31541444
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromatin Immunoprecipitation to Study The Plant Epigenome.
    Xie Z; Presting G
    Methods Mol Biol; 2016; 1429():189-96. PubMed ID: 27511176
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Next-generation technologies and data analytical approaches for epigenomics.
    Mensaert K; Denil S; Trooskens G; Van Criekinge W; Thas O; De Meyer T
    Environ Mol Mutagen; 2014 Apr; 55(3):155-70. PubMed ID: 24327356
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A computational approach for the functional classification of the epigenome.
    Gandolfi F; Tramontano A
    Epigenetics Chromatin; 2017; 10():26. PubMed ID: 28515787
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Correlating histone modification patterns with gene expression data during hematopoiesis.
    Hu G; Zhao K
    Methods Mol Biol; 2014; 1150():175-87. PubMed ID: 24743998
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Epigenome sequencing comes of age in development, differentiation and disease mechanism research.
    Zhao Q; Zhang Y
    Epigenomics; 2011 Apr; 3(2):207-20. PubMed ID: 22122282
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Next-generation sequencing technologies for detection of modified nucleotides in RNAs.
    Schwartz S; Motorin Y
    RNA Biol; 2017 Sep; 14(9):1124-1137. PubMed ID: 27791472
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identifying differential histone modification sites from ChIP-seq data.
    Xu H; Sung WK
    Methods Mol Biol; 2012; 802():293-303. PubMed ID: 22130888
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioinformatics Tools for Genome-Wide Epigenetic Research.
    Angarica VE; Del Sol A
    Adv Exp Med Biol; 2017; 978():489-512. PubMed ID: 28523562
    [TBL] [Abstract][Full Text] [Related]  

  • 38. intePareto: an R package for integrative analyses of RNA-Seq and ChIP-Seq data.
    Cao Y; Kitanovski S; Hoffmann D
    BMC Genomics; 2020 Dec; 21(Suppl 11):802. PubMed ID: 33372591
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chronic MeHg exposure modifies the histone H3K4me3 epigenetic landscape in Caenorhabditis elegans.
    Rudgalvyte M; Peltonen J; Lakso M; Wong G
    Comp Biochem Physiol C Toxicol Pharmacol; 2017 Jan; 191():109-116. PubMed ID: 27717699
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ChIP-seq analysis of histone modifications at the core of the Arabidopsis circadian clock.
    Malapeira J; Mas P
    Methods Mol Biol; 2014; 1158():57-69. PubMed ID: 24792044
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.