BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 2793366)

  • 1. Correlation of redox fluorometry and analytical measurements of pyridine nucleotide.
    Shimazaki J; Tornheim K; Laing RA
    Invest Ophthalmol Vis Sci; 1989 Oct; 30(10):2274-8. PubMed ID: 2793366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes of corneal redox state in diabetic animal models.
    Shimazaki J; Tsubota K; Yoshida A; Tornheim K; Laing RA
    Cornea; 1995 Mar; 14(2):196-201. PubMed ID: 7743804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyridine nucleotides and phosphorylation potential of rabbit corneal epithelium and endothelium.
    Masters BR; Ghosh AK; Wilson J; Matschinsky FM
    Invest Ophthalmol Vis Sci; 1989 May; 30(5):861-68. PubMed ID: 2722442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive measurements of pyridine nucleotide fluorescence from the cornea.
    Laing RA; Fischbarg J; Chance B
    Invest Ophthalmol Vis Sci; 1980 Jan; 19(1):96-102. PubMed ID: 7350140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic and morphologic changes in the corneal endothelium. The effects of potassium cyanide, iodoacetamide, and ouabain.
    Laing RA; Chiba K; Tsubota K; Oak SS
    Invest Ophthalmol Vis Sci; 1992 Nov; 33(12):3315-24. PubMed ID: 1428707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lens redox fluorometry: pyridine nucleotide fluorescence and analysis of diabetic lens.
    Tsubota K; Krauss JM; Kenyon KR; Laing RA; Miglior S; Cheng HM
    Exp Eye Res; 1989 Sep; 49(3):321-34. PubMed ID: 2792231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Oxidation of pyridine nucleotides in injuries of the cornea].
    Egorova EV; Babizhaev MA; Travkin AG; Tolchinskaia AI; Ioshin IE
    Vestn Oftalmol; 1989; 105(3):43-6. PubMed ID: 2749972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real time microfiberoptic redox fluorometry: modulation of the pyridine nucleotide status of the organogenesis-stage rat visceral yolk sac with cyanide and alloxan.
    Thorsrud BA; Harris C
    Toxicol Appl Pharmacol; 1995 Dec; 135(2):237-45. PubMed ID: 8545833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noninvasive measurements of pyridine nucleotide and flavoprotein in the lens.
    Tsubota K; Laing RA; Kenyon KR
    Invest Ophthalmol Vis Sci; 1987 May; 28(5):785-9. PubMed ID: 3570689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal cycling effects on the stored rabbit cornea.
    Oak SS; Laing RA; Chiba K; Tsubota K
    Invest Ophthalmol Vis Sci; 1989 Jul; 30(7):1584-7. PubMed ID: 2744999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of noninvasive fluorometry and spectrophotometry to study epithelial metabolism and transport.
    Mandel LJ
    Fed Proc; 1982 Jan; 41(1):36-41. PubMed ID: 6276232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct effect of contraction and ion transport on NADH fluorescence and lactate production in uterine smooth muscle.
    Rubányi G; Tóth A; Kovách AG
    Acta Physiol Acad Sci Hung; 1982; 59(1):45-58. PubMed ID: 7180510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noninvasive redox fluorometry: how light can be used to monitor alterations of corneal mitochondrial function.
    Masters BR
    Curr Eye Res; 1984 Jan; 3(1):23-6. PubMed ID: 6690223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Simultaneous registration of pyridine nucleotides and flavoproteins in contracting myocardium by the luminescence method].
    Sarapul'tsev EI
    Tsitologiia; 1980 Oct; 22(10):1241-4. PubMed ID: 7445088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyridine nucleotides of rabbit cornea with histotoxic anoxia: chemical analysis, non-invasive fluorometry and physiological correlates.
    Masters BR; Riley MV; Fischbarg J; Chance B
    Exp Eye Res; 1983 Jul; 37(1):1-9. PubMed ID: 6873201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitive and meaningful measures of bacterial metabolic activity using NADH fluorescence.
    Wos M; Pollard P
    Water Res; 2006 Jun; 40(10):2084-92. PubMed ID: 16690100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycolytic oscillation and effect of metabolic inhibitor on rat lens.
    Tsubota K; Laing RA
    Jpn J Ophthalmol; 1992; 36(3):265-72. PubMed ID: 1464967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH.
    Bird DK; Yan L; Vrotsos KM; Eliceiri KW; Vaughan EM; Keely PJ; White JG; Ramanujam N
    Cancer Res; 2005 Oct; 65(19):8766-73. PubMed ID: 16204046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrinsic fluorescence emission from the cornea at low temperatures: evidence of mitochondrial signals and their differing redox states in epithelial and endothelial sides.
    Chance B; Lieberman M
    Exp Eye Res; 1978 Jan; 26(1):111-7. PubMed ID: 203471
    [No Abstract]   [Full Text] [Related]  

  • 20. Association and redox properties of the putidaredoxin reductase-nicotinamide adenine dinucleotide complex.
    Reipa V; Holden MJ; Vilker VL
    Biochemistry; 2007 Nov; 46(45):13235-44. PubMed ID: 17941648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.