These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 27933765)
1. 3D Printing of Hierarchical Silk Fibroin Structures. Sommer MR; Schaffner M; Carnelli D; Studart AR ACS Appl Mater Interfaces; 2016 Dec; 8(50):34677-34685. PubMed ID: 27933765 [TBL] [Abstract][Full Text] [Related]
2. 3D printing of sacrificial templates into hierarchical porous materials. Alison L; Menasce S; Bouville F; Tervoort E; Mattich I; Ofner A; Studart AR Sci Rep; 2019 Jan; 9(1):409. PubMed ID: 30674930 [TBL] [Abstract][Full Text] [Related]
3. Hierarchically porous nagelschmidtite bioceramic-silk scaffolds for bone tissue engineering. Xu M; Li H; Zhai D; Chang J; Chen S; Wu C J Mater Chem B; 2015 May; 3(18):3799-3809. PubMed ID: 32262854 [TBL] [Abstract][Full Text] [Related]
4. Polypeptide templating for designer hierarchical materials. Sun H; Marelli B Nat Commun; 2020 Jan; 11(1):351. PubMed ID: 31953407 [TBL] [Abstract][Full Text] [Related]
5. Microfluidic Fabrication of Bio-Inspired Microfibers with Controllable Magnetic Spindle-Knots for 3D Assembly and Water Collection. He XH; Wang W; Liu YM; Jiang MY; Wu F; Deng K; Liu Z; Ju XJ; Xie R; Chu LY ACS Appl Mater Interfaces; 2015 Aug; 7(31):17471-81. PubMed ID: 26192108 [TBL] [Abstract][Full Text] [Related]
7. Ice-template-induced silk fibroin-chitosan scaffolds with predefined microfluidic channels and fully porous structures. Mao M; He J; Liu Y; Li X; Li D Acta Biomater; 2012 Jul; 8(6):2175-84. PubMed ID: 22269914 [TBL] [Abstract][Full Text] [Related]
8. Silk Fibroin Acts as a Self-Emulsifier to Prepare Hierarchically Porous Silk Fibroin Scaffolds through Emulsion-Ice Dual Templates. Wen J; Yao J; Chen X; Shao Z ACS Omega; 2018 Mar; 3(3):3396-3405. PubMed ID: 30023868 [TBL] [Abstract][Full Text] [Related]
9. [Property studies on three-dimensional porous blended silk scaffolds]. Rao J; Shen J; Quan D; Xu Y Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Oct; 23(10):1264-70. PubMed ID: 19957853 [TBL] [Abstract][Full Text] [Related]
10. Inkjet Bioprinting of 3D Silk Fibroin Cellular Constructs Using Sacrificial Alginate. Compaan AM; Christensen K; Huang Y ACS Biomater Sci Eng; 2017 Aug; 3(8):1519-1526. PubMed ID: 33429638 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching. Mohanty S; Sanger K; Heiskanen A; Trifol J; Szabo P; Dufva M; Emnéus J; Wolff A Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():180-9. PubMed ID: 26838839 [TBL] [Abstract][Full Text] [Related]
12. Modified silk fibroin scaffolds with collagen/decellularized pulp for bone tissue engineering in cleft palate: Morphological structures and biofunctionalities. Sangkert S; Meesane J; Kamonmattayakul S; Chai WL Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():1138-49. PubMed ID: 26478414 [TBL] [Abstract][Full Text] [Related]
13. Fabrication and characterization of poly(propylene fumarate) scaffolds with controlled pore structures using 3-dimensional printing and injection molding. Lee KW; Wang S; Lu L; Jabbari E; Currier BL; Yaszemski MJ Tissue Eng; 2006 Oct; 12(10):2801-11. PubMed ID: 17518649 [TBL] [Abstract][Full Text] [Related]
14. Cell proliferation and migration in silk fibroin 3D scaffolds. Mandal BB; Kundu SC Biomaterials; 2009 May; 30(15):2956-65. PubMed ID: 19249094 [TBL] [Abstract][Full Text] [Related]
15. Green process to prepare silk fibroin/gelatin biomaterial scaffolds. Lu Q; Zhang X; Hu X; Kaplan DL Macromol Biosci; 2010 Mar; 10(3):289-98. PubMed ID: 19924684 [TBL] [Abstract][Full Text] [Related]
16. Self-assembly model, hepatocytes attachment and inflammatory response for silk fibroin/chitosan scaffolds. She Z; Liu W; Feng Q Biomed Mater; 2009 Aug; 4(4):045014. PubMed ID: 19671956 [TBL] [Abstract][Full Text] [Related]
17. Freeze-gelled silk fibroin protein scaffolds for potential applications in soft tissue engineering. Bhardwaj N; Chakraborty S; Kundu SC Int J Biol Macromol; 2011 Oct; 49(3):260-7. PubMed ID: 21557966 [TBL] [Abstract][Full Text] [Related]
18. The effects of pore architecture in silk fibroin scaffolds on the growth and differentiation of mesenchymal stem cells expressing BMP7. Zhang Y; Fan W; Ma Z; Wu C; Fang W; Liu G; Xiao Y Acta Biomater; 2010 Aug; 6(8):3021-8. PubMed ID: 20188872 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Kim UJ; Park J; Kim HJ; Wada M; Kaplan DL Biomaterials; 2005 May; 26(15):2775-85. PubMed ID: 15585282 [TBL] [Abstract][Full Text] [Related]
20. 3D Printing of Salt as a Template for Magnesium with Structured Porosity. Kleger N; Cihova M; Masania K; Studart AR; Löffler JF Adv Mater; 2019 Sep; 31(37):e1903783. PubMed ID: 31353635 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]