These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Flame retardant and smoke-suppressant rigid polyurethane foam based on sodium alginate and aluminum diethylphosphite. Zhang W; Zhao Z; Lei Y Des Monomers Polym; 2021 Jan; 24(1):46-52. PubMed ID: 33551667 [TBL] [Abstract][Full Text] [Related]
3. Bio-based melamine formaldehyde resins for flame-retardant polyurethane foams. Wang Y; Zheng X; Jiang K; Han D; Zhang Q Int J Biol Macromol; 2024 Jul; 273(Pt 1):132836. PubMed ID: 38834127 [TBL] [Abstract][Full Text] [Related]
4. Stable electrically conductive, highly flame-retardant foam composites generated from reduced graphene oxide and silicone resin coatings. Wu Q; Liu C; Tang L; Yan Y; Qiu H; Pei Y; Sailor MJ; Wu L Soft Matter; 2021 Jan; 17(1):68-82. PubMed ID: 33147311 [TBL] [Abstract][Full Text] [Related]
5. Thermal and Combustion Properties of Biomass-Based Flame-Retardant Polyurethane Foams Containing P and N. Zhan J; Mao L; Qin R; Qian J; Mu X Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063764 [TBL] [Abstract][Full Text] [Related]
6. Engineering Sulfur-Containing Polymeric Fire-Retardant Coatings for Fire-Safe Rigid Polyurethane Foam. Fang Y; Ma Z; Wei D; Yu Y; Liu L; Shi Y; Gao J; Tang LC; Huang G; Song P Macromol Rapid Commun; 2024 Jul; 45(14):e2400068. PubMed ID: 38593218 [TBL] [Abstract][Full Text] [Related]
7. Formation of layer-by-layer assembled titanate nanotubes filled coating on flexible polyurethane foam with improved flame retardant and smoke suppression properties. Pan H; Wang W; Pan Y; Song L; Hu Y; Liew KM ACS Appl Mater Interfaces; 2015 Jan; 7(1):101-11. PubMed ID: 25496211 [TBL] [Abstract][Full Text] [Related]
8. A novel and facile strategy for highly flame retardant polymer foam composite materials: Transforming silicone resin coating into silica self-extinguishing layer. Wu Q; Zhang Q; Zhao L; Li SN; Wu LB; Jiang JX; Tang LC J Hazard Mater; 2017 Aug; 336():222-231. PubMed ID: 28494310 [TBL] [Abstract][Full Text] [Related]
9. Establishment of a highly efficient flame-retardant system for rigid polyurethane foams based on bi-phase flame-retardant actions. Shi X; Jiang S; Zhu J; Li G; Peng X RSC Adv; 2018 Mar; 8(18):9985-9995. PubMed ID: 35540820 [TBL] [Abstract][Full Text] [Related]
10. The improvement of fire safety performance of flexible polyurethane foam by Highly-efficient P-N-S elemental hybrid synergistic flame retardant. Zhang S; Chu F; Xu Z; Zhou Y; Qiu Y; Qian L; Hu Y; Wang B; Hu W J Colloid Interface Sci; 2022 Jan; 606(Pt 1):768-783. PubMed ID: 34419816 [TBL] [Abstract][Full Text] [Related]
11. Extreme Heat Shielding of Clay/Chitosan Nanobrick Wall on Flexible Foam. Lazar S; Carosio F; Davesne AL; Jimenez M; Bourbigot S; Grunlan J ACS Appl Mater Interfaces; 2018 Sep; 10(37):31686-31696. PubMed ID: 30148595 [TBL] [Abstract][Full Text] [Related]
12. Mechanically Sustainable Starch-Based Flame-Retardant Coatings on Polyurethane Foams. Choi KW; Kim JW; Kwon TS; Kang SW; Song JI; Park YT Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33920820 [TBL] [Abstract][Full Text] [Related]
13. Highly efficient flame-retardant and low-smoke-toxicity poly(vinyl alcohol)/alginate/ montmorillonite composite aerogels by two-step crosslinking strategy. Wu N; Niu F; Lang W; Xia M Carbohydr Polym; 2019 Oct; 221():221-230. PubMed ID: 31227162 [TBL] [Abstract][Full Text] [Related]
14. Microstructure and thermal characterization of aerogel-graphite polyurethane spray-foam composite for high efficiency thermal energy utilization. Wi S; Berardi U; Loreto SD; Kim S J Hazard Mater; 2020 Oct; 397():122656. PubMed ID: 32416380 [TBL] [Abstract][Full Text] [Related]
15. Polyurethane/Vermiculite Foam Composite as Sustainable Material for Vertical Flame Retardant. Alves LRPST; Alves MDTC; Honorio LMC; Moraes AI; Silva-Filho EC; Peña-Garcia R; Furtini MB; da Silva DA; Osajima JA Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36145923 [TBL] [Abstract][Full Text] [Related]
16. Surface Flame-Retardant Systems of Rigid Polyurethane Foams: An Overview. Jiang Y; Yang H; Lin X; Xiang S; Feng X; Wan C Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049021 [TBL] [Abstract][Full Text] [Related]
17. Ultralight and Hydrophobic Palygorskite-based Aerogels with Prominent Thermal Insulation and Flame Retardancy. Jin H; Zhou X; Xu T; Dai C; Gu Y; Yun S; Hu T; Guan G; Chen J ACS Appl Mater Interfaces; 2020 Mar; 12(10):11815-11824. PubMed ID: 32092256 [TBL] [Abstract][Full Text] [Related]
18. Nonflammable Alginate Nanocomposite Aerogels Prepared by a Simple Freeze-Drying and Post-Cross-Linking Method. Shang K; Liao W; Wang J; Wang YT; Wang YZ; Schiraldi DA ACS Appl Mater Interfaces; 2016 Jan; 8(1):643-50. PubMed ID: 26675804 [TBL] [Abstract][Full Text] [Related]
19. HNTs Improve Flame Retardant and Thermal Insulation of the PVA/CA Composite Aerogel. Yang T; Xu J; Lv S ACS Omega; 2024 Oct; 9(39):40608-40617. PubMed ID: 39372011 [TBL] [Abstract][Full Text] [Related]
20. Burning Behaviour of Rigid Polyurethane Foams with Histidine and Modified Graphene Oxide. Sałasińska K; Leszczyńska M; Celiński M; Kozikowski P; Kowiorski K; Lipińska L Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33802345 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]