These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 27933911)

  • 1. A Benefit of Using the IDSCRF- over UFF-Radii Cavities and Why Joint Correlations of NMR Chemical Shifts Can Be Advantageous: Condensed Pyridines as an IEF-PCM/GIAO/DFT Case Study.
    Nazarski RB; Justyna K; Leśniak S; Chrostowska A
    J Phys Chem A; 2016 Dec; 120(48):9519-9528. PubMed ID: 27933911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-conformer molecules in solutions: an NMR-based DFT/MP2 conformational study of two glucopyranosides of a vitamin E model compound.
    Nazarski RB; Wałejko P; Witkowski S
    Org Biomol Chem; 2016 Mar; 14(11):3142-58. PubMed ID: 26911319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solvent effects in the GIAO-DFT calculations of the 15N NMR chemical shifts of azoles and azines.
    Semenov VA; Samultsev DO; Krivdin LB
    Magn Reson Chem; 2014 Nov; 52(11):686-93. PubMed ID: 25102971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DFT computational schemes for
    Semenov VA; Samultsev DO; Krivdin LB
    Magn Reson Chem; 2019 Jul; 57(7):346-358. PubMed ID: 30769377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the accuracy of the GIAO-DFT calculation of 15N NMR chemical shifts of the nitrogen-containing heterocycles--a gateway to better agreement with experiment at lower computational cost.
    Samultsev DO; Semenov VA; Krivdin LB
    Magn Reson Chem; 2014 May; 52(5):222-30. PubMed ID: 24573615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substitution effects in the
    Semenov VA; Samultsev DO; Krivdin LB
    Magn Reson Chem; 2018 Aug; 56(8):767-774. PubMed ID: 29504638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the accuracy factors and computational cost of the GIAO-DFT calculation of
    Samultsev DO; Semenov VA; Krivdin LB
    Magn Reson Chem; 2017 Nov; 55(11):1015-1021. PubMed ID: 28600816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DFT calculations in solution systems: solvation energy, dispersion energy and entropy.
    Liu SC; Zhu XR; Liu DY; Fang DC
    Phys Chem Chem Phys; 2023 Jan; 25(2):913-931. PubMed ID: 36519338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of solute-solvent interactions in phenol compounds: accurate ab initio calculations of solvent effects on 1H NMR chemical shifts.
    Siskos MG; Kontogianni VG; Tsiafoulis CG; Tzakos AG; Gerothanassis IP
    Org Biomol Chem; 2013 Nov; 11(42):7400-11. PubMed ID: 24071830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvation of Amides in DMSO and CDCl
    Molchanov S; Gryff-Keller A
    J Phys Chem A; 2017 Dec; 121(50):9645-9653. PubMed ID: 29179531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate prediction of 195Pt NMR chemical shifts for a series of Pt(II) and Pt(IV) antitumor agents by a non-relativistic DFT computational protocol.
    Tsipis AC; Karapetsas IN
    Dalton Trans; 2014 Apr; 43(14):5409-26. PubMed ID: 24519094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How reliable are GIAO calculations of 1H and 13C NMR chemical shifts? A statistical analysis and empirical corrections at DFT (PBE/3z) level.
    Pankratyev EY; Tulyabaev AR; Khalilov LM
    J Comput Chem; 2011 Jul; 32(9):1993-7. PubMed ID: 21469162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the Use of Deuterated Organic Solvents without TMS to Report
    Nazarski RB
    Molecules; 2023 May; 28(11):. PubMed ID: 37298845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regression formulas for density functional theory calculated 1H and 13C NMR chemical shifts in toluene-d8.
    Konstantinov IA; Broadbelt LJ
    J Phys Chem A; 2011 Nov; 115(44):12364-72. PubMed ID: 21966955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman, infrared and NMR spectral analysis, normal coordinate analysis and theoretical calculations of 5-(methylthio)-1,3,4-thiadiazole-2(3H)-thione and its thiol tautomer.
    Mohamed TA; Soliman UA; Shaaban IA; Zoghaib WM; Wilson LD
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 150():339-49. PubMed ID: 26056985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards the versatile DFT and MP2 computational schemes for 31P NMR chemical shifts taking into account relativistic corrections.
    Fedorov SV; Rusakov YY; Krivdin LB
    Magn Reson Chem; 2014 Nov; 52(11):699-710. PubMed ID: 25155415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical Investigation of Tautomeric Equilibria for Isonicotinic Acid, 4-Pyridone, and Acetylacetone in Vacuo and in Solution.
    Nagy PI; Alagona G; Ghio C
    J Chem Theory Comput; 2007 Jul; 3(4):1249-66. PubMed ID: 26633199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges.
    Marenich AV; Olson RM; Kelly CP; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2007 Nov; 3(6):2011-33. PubMed ID: 26636198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of experimental and DFT-calculated NMR chemical shifts of 2-amino and 2-hydroxyl substituted phenyl benzimidazoles, benzoxazoles and benzothiazoles in four solvents using the IEF-PCM solvation model.
    Pierens GK; Venkatachalam TK; Reutens DC
    Magn Reson Chem; 2016 Apr; 54(4):298-307. PubMed ID: 26478462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GIAO/DFT studies on 1,2,4-triazole-5-thiones and their propargyl derivatives.
    Phalgune UD; Vanka K; Rajamohanan PR
    Magn Reson Chem; 2013 Dec; 51(12):767-74. PubMed ID: 24114881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.