BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 27933943)

  • 1. Long-Lived Intermediates in a Cooperative Two-State Folding Transition.
    El-Baba TJ; Kim D; Rogers DB; Khan FA; Hales DA; Russell DH; Clemmer DE
    J Phys Chem B; 2016 Dec; 120(47):12040-12046. PubMed ID: 27933943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion Mobility-Mass Spectrometry Reveals the Energetics of Intermediates that Guide Polyproline Folding.
    Shi L; Holliday AE; Glover MS; Ewing MA; Russell DH; Clemmer DE
    J Am Soc Mass Spectrom; 2016 Jan; 27(1):22-30. PubMed ID: 26362047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing intermediates along the transition from polyproline I to polyproline II using ion mobility spectrometry-mass spectrometry.
    Shi L; Holliday AE; Shi H; Zhu F; Ewing MA; Russell DH; Clemmer DE
    J Am Chem Soc; 2014 Sep; 136(36):12702-11. PubMed ID: 25105554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "Wet" Versus "Dry" Folding of Polyproline.
    Shi L; Holliday AE; Bohrer BC; Kim D; Servage KA; Russell DH; Clemmer DE
    J Am Soc Mass Spectrom; 2016 Jun; 27(6):1037-47. PubMed ID: 27059978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Configurationally-Coupled Protonation of Polyproline-7.
    Shi L; Holliday AE; Khanal N; Russell DH; Clemmer DE
    J Am Chem Soc; 2015 Jul; 137(27):8680-3. PubMed ID: 26115587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvent Mediation of Peptide Conformations: Polyproline Structures in Water, Methanol, Ethanol, and 1-Propanol as Determined by Ion Mobility Spectrometry-Mass Spectrometry.
    El-Baba TJ; Fuller DR; Hales DA; Russell DH; Clemmer DE
    J Am Soc Mass Spectrom; 2019 Jan; 30(1):77-84. PubMed ID: 30069641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-induced transition between polyproline I and II helices: quantitative fitting of hysteresis effects.
    Kuemin M; Engel J; Wennemers H
    J Pept Sci; 2010 Oct; 16(10):596-600. PubMed ID: 20862727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Titration properties and thermodynamics of the transition state for folding: comparison of two-state and multi-state folding pathways.
    Tan YJ; Oliveberg M; Fersht AR
    J Mol Biol; 1996 Nov; 264(2):377-89. PubMed ID: 8951383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impacts of terminal (4R)-fluoroproline and (4S)-fluoroproline residues on polyproline conformation.
    Lin YJ; Horng JC
    Amino Acids; 2014 Oct; 46(10):2317-24. PubMed ID: 24947982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folding dynamics of the Trp-cage miniprotein: evidence for a native-like intermediate from combined time-resolved vibrational spectroscopy and molecular dynamics simulations.
    Meuzelaar H; Marino KA; Huerta-Viga A; Panman MR; Smeenk LE; Kettelarij AJ; van Maarseveen JH; Timmerman P; Bolhuis PG; Woutersen S
    J Phys Chem B; 2013 Oct; 117(39):11490-501. PubMed ID: 24050152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Following a Folding Transition with Capillary Electrophoresis and Ion Mobility Spectrometry.
    Barr JD; Shi L; Russell DH; Clemmer DE; Holliday AE
    Anal Chem; 2016 Nov; 88(22):10933-10939. PubMed ID: 27809500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The nature of the free energy barriers to two-state folding.
    Akmal A; Muñoz V
    Proteins; 2004 Oct; 57(1):142-52. PubMed ID: 15326600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH-dependent stability and folding kinetics of a protein with an unusual alpha-beta topology: the C-terminal domain of the ribosomal protein L9.
    Sato S; Raleigh DP
    J Mol Biol; 2002 Apr; 318(2):571-82. PubMed ID: 12051860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A classical molecular dynamics investigation of the free energy and structure of short polyproline conformers.
    Moradi M; Babin V; Roland C; Sagui C
    J Chem Phys; 2010 Sep; 133(12):125104. PubMed ID: 20886968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-exponential kinetics and a complete folding pathway of an α-helical heteropeptide: direct observation and comprehensive molecular dynamics.
    Jas GS; Middaugh CR; Kuczera K
    J Phys Chem B; 2014 Jan; 118(2):639-47. PubMed ID: 24341828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser temperature jump study of the helix<==>coil kinetics of an alanine peptide interpreted with a 'kinetic zipper' model.
    Thompson PA; Eaton WA; Hofrichter J
    Biochemistry; 1997 Jul; 36(30):9200-10. PubMed ID: 9230053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Essential dynamics of reversible peptide folding: memory-free conformational dynamics governed by internal hydrogen bonds.
    de Groot BL; Daura X; Mark AE; Grubmüller H
    J Mol Biol; 2001 May; 309(1):299-313. PubMed ID: 11491298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvation properties of N-substituted cis and trans amides are not identical: significant enthalpy and entropy changes are revealed by the use of variable temperature 1H NMR in aqueous and chloroform solutions and ab initio calculations.
    Troganis AN; Sicilia E; Barbarossou K; Gerothanassis IP; Russo N
    J Phys Chem A; 2005 Dec; 109(51):11878-84. PubMed ID: 16366639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structure of the transition state for folding of chymotrypsin inhibitor 2 analysed by protein engineering methods: evidence for a nucleation-condensation mechanism for protein folding.
    Itzhaki LS; Otzen DE; Fersht AR
    J Mol Biol; 1995 Nov; 254(2):260-88. PubMed ID: 7490748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.