These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 27934035)
1. Mechanistic Insights into the Challenges of Cycling a Nonaqueous Na-O Liu T; Kim G; Casford MT; Grey CP J Phys Chem Lett; 2016 Dec; 7(23):4841-4846. PubMed ID: 27934035 [TBL] [Abstract][Full Text] [Related]
2. Insights into Electrochemical Oxidation of NaO Morasch R; Kwabi DG; Tulodziecki M; Risch M; Zhang S; Shao-Horn Y ACS Appl Mater Interfaces; 2017 Feb; 9(5):4374-4381. PubMed ID: 28173703 [TBL] [Abstract][Full Text] [Related]
3. Chemical and Electrochemical Differences in Nonaqueous Li-O2 and Na-O2 Batteries. McCloskey BD; Garcia JM; Luntz AC J Phys Chem Lett; 2014 Apr; 5(7):1230-5. PubMed ID: 26274476 [TBL] [Abstract][Full Text] [Related]
4. Hierarchical Porous Carbon Spheres for High-Performance Na-O Sun B; Kretschmer K; Xie X; Munroe P; Peng Z; Wang G Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28374959 [TBL] [Abstract][Full Text] [Related]
5. Mechanistic origin of low polarization in aprotic Na-O Ma S; McKee WC; Wang J; Guo L; Jansen M; Xu Y; Peng Z Phys Chem Chem Phys; 2017 May; 19(19):12375-12383. PubMed ID: 28462412 [TBL] [Abstract][Full Text] [Related]
6. Robust NaO2 Electrochemistry in Aprotic Na-O2 Batteries Employing Ethereal Electrolytes with a Protic Additive. Abate II; Thompson LE; Kim HC; Aetukuri NB J Phys Chem Lett; 2016 Jun; 7(12):2164-9. PubMed ID: 27214400 [TBL] [Abstract][Full Text] [Related]
7. Sodium-Oxygen Batteries: A Comparative Review from Chemical and Electrochemical Fundamentals to Future Perspective. Yadegari H; Sun Q; Sun X Adv Mater; 2016 Sep; 28(33):7065-93. PubMed ID: 27258965 [TBL] [Abstract][Full Text] [Related]
8. Singlet Oxygen during Cycling of the Aprotic Sodium-O Schafzahl L; Mahne N; Schafzahl B; Wilkening M; Slugovc C; Borisov SM; Freunberger SA Angew Chem Int Ed Engl; 2017 Dec; 56(49):15728-15732. PubMed ID: 29024316 [TBL] [Abstract][Full Text] [Related]
9. Understanding side reactions in K-O2 batteries for improved cycle life. Ren X; Lau KC; Yu M; Bi X; Kreidler E; Curtiss LA; Wu Y ACS Appl Mater Interfaces; 2014 Nov; 6(21):19299-307. PubMed ID: 25295518 [TBL] [Abstract][Full Text] [Related]
10. How To Improve Capacity and Cycling Stability for Next Generation Li-O2 Batteries: Approach with a Solid Electrolyte and Elevated Redox Mediator Concentrations. Bergner BJ; Busche MR; Pinedo R; Berkes BB; Schröder D; Janek J ACS Appl Mater Interfaces; 2016 Mar; 8(12):7756-65. PubMed ID: 26942895 [TBL] [Abstract][Full Text] [Related]
11. Operando Monitoring of the Solution-Mediated Discharge and Charge Processes in a Na-O Lutz L; Dachraoui W; Demortière A; Johnson LR; Bruce PG; Grimaud A; Tarascon JM Nano Lett; 2018 Feb; 18(2):1280-1289. PubMed ID: 29356550 [TBL] [Abstract][Full Text] [Related]
12. The Effect of Water on Quinone Redox Mediators in Nonaqueous Li-O Liu T; Frith JT; Kim G; Kerber RN; Dubouis N; Shao Y; Liu Z; Magusin PCMM; Casford MTL; Garcia-Araez N; Grey CP J Am Chem Soc; 2018 Jan; 140(4):1428-1437. PubMed ID: 29345915 [TBL] [Abstract][Full Text] [Related]
13. High-Performance Na-O Khajehbashi SMB; Xu L; Zhang G; Tan S; Zhao Y; Wang LS; Li J; Luo W; Peng DL; Mai L Nano Lett; 2018 Jun; 18(6):3934-3942. PubMed ID: 29734805 [TBL] [Abstract][Full Text] [Related]
14. Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery. Wei X; Xu W; Huang J; Zhang L; Walter E; Lawrence C; Vijayakumar M; Henderson WA; Liu T; Cosimbescu L; Li B; Sprenkle V; Wang W Angew Chem Int Ed Engl; 2015 Jul; 54(30):8684-7. PubMed ID: 25891480 [TBL] [Abstract][Full Text] [Related]
15. Unraveling the Effect of Singlet Oxygen on Metal-O Ruiz de Larramendi I; Ortiz-Vitoriano N Front Chem; 2020; 8():605. PubMed ID: 32775318 [TBL] [Abstract][Full Text] [Related]
16. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
17. Concentrated Electrolyte for the Sodium-Oxygen Battery: Solvation Structure and Improved Cycle Life. He M; Lau KC; Ren X; Xiao N; McCulloch WD; Curtiss LA; Wu Y Angew Chem Int Ed Engl; 2016 Dec; 55(49):15310-15314. PubMed ID: 27809386 [TBL] [Abstract][Full Text] [Related]
18. Electrolyte-controlled discharge product distribution of Na-O Wang B; Zhao N; Wang Y; Zhang W; Lu W; Guo X; Liu J Phys Chem Chem Phys; 2017 Jan; 19(4):2940-2949. PubMed ID: 28079211 [TBL] [Abstract][Full Text] [Related]
19. Identifying Reactive Sites and Transport Limitations of Oxygen Reactions in Aprotic Lithium-O2 Batteries at the Stage of Sudden Death. Wang J; Zhang Y; Guo L; Wang E; Peng Z Angew Chem Int Ed Engl; 2016 Apr; 55(17):5201-5. PubMed ID: 26970228 [TBL] [Abstract][Full Text] [Related]
20. Importance of Reaction Kinetics and Oxygen Crossover in aprotic Li-O2 Batteries Based on a Dimethyl Sulfoxide Electrolyte. Marinaro M; Balasubramanian P; Gucciardi E; Theil S; Jörissen L; Wohlfahrt-Mehrens M ChemSusChem; 2015 Sep; 8(18):3139-45. PubMed ID: 26249807 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]