These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 27934072)

  • 1. Walking the Walk: A Giant Step toward Sustainable Plasmonics.
    DeSantis CJ; McClain MJ; Halas NJ
    ACS Nano; 2016 Nov; 10(11):9772-9775. PubMed ID: 27934072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aluminum for plasmonics.
    Knight MW; King NS; Liu L; Everitt HO; Nordlander P; Halas NJ
    ACS Nano; 2014 Jan; 8(1):834-40. PubMed ID: 24274662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epitaxial Growth of Atomically Smooth Aluminum on Silicon and Its Intrinsic Optical Properties.
    Cheng F; Su PH; Choi J; Gwo S; Li X; Shih CK
    ACS Nano; 2016 Nov; 10(11):9852-9860. PubMed ID: 27656756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aluminum nanopyramid array with tunable ultraviolet-visible-infrared wavelength plasmon resonances for rapid detection of carbohydrate antigen 199.
    Li W; Qiu Y; Zhang L; Jiang L; Zhou Z; Chen H; Zhou J
    Biosens Bioelectron; 2016 May; 79():500-7. PubMed ID: 26748367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnesium for Dynamic Nanoplasmonics.
    Duan X; Liu N
    Acc Chem Res; 2019 Jul; 52(7):1979-1989. PubMed ID: 31246401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultraviolet Interband Plasmonics With Si Nanostructures.
    Dong Z; Wang T; Chi X; Ho J; Tserkezis C; Yap SLK; Rusydi A; Tjiptoharsono F; Thian D; Mortensen NA; Yang JKW
    Nano Lett; 2019 Nov; 19(11):8040-8048. PubMed ID: 31560545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alloying: A Platform for Metallic Materials with On-Demand Optical Response.
    Rebello Sousa Dias M; Leite MS
    Acc Chem Res; 2019 Oct; 52(10):2881-2891. PubMed ID: 31305980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aluminum Nanoarrays for Plasmon-Enhanced Light Harvesting.
    Lee M; Kim JU; Lee KJ; Ahn S; Shin YB; Shin J; Park CB
    ACS Nano; 2015 Jun; 9(6):6206-13. PubMed ID: 26046384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Crystalline Aluminum Nanostructures on a Semiconducting GaAs Substrate for Ultraviolet to Near-Infrared Plasmonics.
    Liu HW; Lin FC; Lin SW; Wu JY; Chou BT; Lai KJ; Lin SD; Huang JS
    ACS Nano; 2015 Apr; 9(4):3875-86. PubMed ID: 25848830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-loss aluminum epitaxial film for scalable and sustainable plasmonics: direct comparison with silver epitaxial film.
    Raja SS; Cheng CW; Gwo S
    Nanoscale; 2020 Dec; 12(46):23809-23816. PubMed ID: 33237103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pushing the high-energy limit of plasmonics.
    Bisio F; Proietti Zaccaria R; Moroni R; Maidecchi G; Alabastri A; Gonella G; Giglia A; Andolfi L; Nannarone S; Mattera L; Canepa M
    ACS Nano; 2014 Sep; 8(9):9239-47. PubMed ID: 25181497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fano Resonant Aluminum Nanoclusters for Plasmonic Colorimetric Sensing.
    King NS; Liu L; Yang X; Cerjan B; Everitt HO; Nordlander P; Halas NJ
    ACS Nano; 2015 Nov; 9(11):10628-36. PubMed ID: 26426492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnesium Nanoparticle Plasmonics.
    Biggins JS; Yazdi S; Ringe E
    Nano Lett; 2018 Jun; 18(6):3752-3758. PubMed ID: 29771126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topologically Enclosed Aluminum Voids as Plasmonic Nanostructures.
    Zhu Y; Nakashima PNH; Funston AM; Bourgeois L; Etheridge J
    ACS Nano; 2017 Nov; 11(11):11383-11392. PubMed ID: 29094925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Material effects on V-nanoantenna performance.
    Earl SK; Gómez DE; James TD; Davis TJ; Roberts A
    Nanoscale; 2015 Mar; 7(9):4179-86. PubMed ID: 25670157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles.
    Robatjazi H; Zhao H; Swearer DF; Hogan NJ; Zhou L; Alabastri A; McClain MJ; Nordlander P; Halas NJ
    Nat Commun; 2017 Jun; 8(1):27. PubMed ID: 28638073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Galvanic Replacement Reaction as a Route to Prepare Nanoporous Aluminum for UV Plasmonics.
    Garoli D; Schirato A; Giovannini G; Cattarin S; Ponzellini P; Calandrini E; Proietti Zaccaria R; D'Amico F; Pachetti M; Yang W; Jin HJ; Krahne R; Alabastri A
    Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31947927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aluminum Nanorods.
    Clark BD; Jacobson CR; Lou M; Yang J; Zhou L; Gottheim S; DeSantis CJ; Nordlander P; Halas NJ
    Nano Lett; 2018 Feb; 18(2):1234-1240. PubMed ID: 29272131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi.
    McMahon JM; Schatz GC; Gray SK
    Phys Chem Chem Phys; 2013 Apr; 15(15):5415-23. PubMed ID: 23429382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.