BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 27934132)

  • 1. Investigating the CVD Synthesis of Graphene on Ge(100): toward Layer-by-Layer Growth.
    Scaparro AM; Miseikis V; Coletti C; Notargiacomo A; Pea M; De Seta M; Di Gaspare L
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):33083-33090. PubMed ID: 27934132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-Free CVD Graphene Synthesis on 200 mm Ge/Si(001) Substrates.
    Lukosius M; Dabrowski J; Kitzmann J; Fursenko O; Akhtar F; Lisker M; Lippert G; Schulze S; Yamamoto Y; Schubert MA; Krause HM; Wolff A; Mai A; Schroeder T; Lupina G
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33786-33793. PubMed ID: 27960421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulsed-Plasma Physical Vapor Deposition Approach Toward the Facile Synthesis of Multilayer and Monolayer Graphene for Anticoagulation Applications.
    Vijayaraghavan RK; Gaman C; Jose B; McCoy AP; Cafolla T; McNally PJ; Daniels S
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4878-86. PubMed ID: 26808203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene film-functionalized germanium as a chemically stable, electrically conductive, and biologically active substrate.
    Li J; Wang G; Zhang W; Jin G; Zhang M; Jiang X; Di Z; Liu X; Wang X
    J Mater Chem B; 2015 Feb; 3(8):1544-1555. PubMed ID: 32262427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical vapor deposition of high quality graphene films from carbon dioxide atmospheres.
    Strudwick AJ; Weber NE; Schwab MG; Kettner M; Weitz RT; Wünsch JR; Müllen K; Sachdev H
    ACS Nano; 2015 Jan; 9(1):31-42. PubMed ID: 25398132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the growth mechanism of graphene on Ge/Si(001) surfaces.
    Dabrowski J; Lippert G; Avila J; Baringhaus J; Colambo I; Dedkov YS; Herziger F; Lupina G; Maultzsch J; Schaffus T; Schroeder T; Kot M; Tegenkamp C; Vignaud D; Asensio MC
    Sci Rep; 2016 Aug; 6():31639. PubMed ID: 27531322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Layer number identification of CVD-grown multilayer graphene using Si peak analysis.
    No YS; Choi HK; Kim JS; Kim H; Yu YJ; Choi CG; Choi JS
    Sci Rep; 2018 Jan; 8(1):571. PubMed ID: 29330376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Layer Graphene/Germanium Interface Representing a Schottky Junction Studied by Photoelectron Spectroscopy.
    Mendoza CD; Freire FL
    Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate.
    Kim H; Song I; Park C; Son M; Hong M; Kim Y; Kim JS; Shin HJ; Baik J; Choi HC
    ACS Nano; 2013 Aug; 7(8):6575-82. PubMed ID: 23869700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controllable chemical vapor deposition growth of few layer graphene for electronic devices.
    Wei D; Wu B; Guo Y; Yu G; Liu Y
    Acc Chem Res; 2013 Jan; 46(1):106-15. PubMed ID: 22809220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical Vapor Deposition Growth of Graphene on 200 mm Ge(110)/Si Wafers and Ab Initio Analysis of Differences in Growth Mechanisms on Ge(110) and Ge(001).
    Akhtar F; Dabrowski J; Lukose R; Wenger C; Lukosius M
    ACS Appl Mater Interfaces; 2023 Aug; 15(30):36966-36974. PubMed ID: 37479219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Mobility Epitaxial Graphene on Ge/Si(100) Substrates.
    Aprojanz J; Rosenzweig P; Nguyen TTN; Karakachian H; Küster K; Starke U; Lukosius M; Lippert G; Sinterhauf A; Wenderoth M; Zakharov AA; Tegenkamp C
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):43065-43072. PubMed ID: 32865383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Germanium-Assisted Direct Growth of Graphene on Arbitrary Dielectric Substrates for Heating Devices.
    Wang Z; Xue Z; Zhang M; Wang Y; Xie X; Chu PK; Zhou P; Di Z; Wang X
    Small; 2017 Jul; 13(28):. PubMed ID: 28561931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of GeO
    Dumiszewska E; Ciepielewski P; Caban PA; Jóźwik I; Gaca J; Baranowski JM
    Molecules; 2022 Jun; 27(11):. PubMed ID: 35684572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical Vapor Deposited Few-Layer Graphene as an Electron Field Emitter.
    Behural SK; Nayak S; Yang Q; Hirose A; Janil O
    J Nanosci Nanotechnol; 2016 Jan; 16(1):287-95. PubMed ID: 27398456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polycrystallinity and stacking in CVD graphene.
    Tsen AW; Brown L; Havener RW; Park J
    Acc Chem Res; 2013 Oct; 46(10):2286-96. PubMed ID: 23135386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic and Mechanical Properties of Graphene-Germanium Interfaces Grown by Chemical Vapor Deposition.
    Kiraly B; Jacobberger RM; Mannix AJ; Campbell GP; Bedzyk MJ; Arnold MS; Hersam MC; Guisinger NP
    Nano Lett; 2015 Nov; 15(11):7414-20. PubMed ID: 26506006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of nanocrystalline graphene on germanium.
    Yekani R; Rusak E; Riaz A; Felten A; Breitung B; Dehm S; Perera D; Rohrer J; Rockstuhl C; Krupke R
    Nanoscale; 2018 Jul; 10(25):12156-12162. PubMed ID: 29916516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Raman spectroscopy and in situ Raman spectroelectrochemistry of isotopically engineered graphene systems.
    Frank O; Dresselhaus MS; Kalbac M
    Acc Chem Res; 2015 Jan; 48(1):111-8. PubMed ID: 25569178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.