These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 27934135)

  • 1. Cancer Cell Hyperactivity and Membrane Dipolarity Monitoring via Raman Mapping of Interfaced Graphene: Toward Non-Invasive Cancer Diagnostics.
    Keisham B; Cole A; Nguyen P; Mehta A; Berry V
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):32717-32722. PubMed ID: 27934135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum Capacitance Based Amplified Graphene Phononics for Studying Neurodegenerative Diseases.
    Keisham B; Seksenyan A; Denyer S; Kheirkhah P; Arnone GD; Avalos P; Bhimani AD; Svendsen C; Berry V; Mehta AI
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):169-175. PubMed ID: 30468382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Second-order overtone and combination Raman modes of graphene layers in the range of 1690-2150 cm(-1).
    Cong C; Yu T; Saito R; Dresselhaus GF; Dresselhaus MS
    ACS Nano; 2011 Mar; 5(3):1600-5. PubMed ID: 21344883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Precision Imaging of Microscopic Spread of Glioblastoma with a Targeted Ultrasensitive SERRS Molecular Imaging Probe.
    Huang R; Harmsen S; Samii JM; Karabeber H; Pitter KL; Holland EC; Kircher MF
    Theranostics; 2016; 6(8):1075-84. PubMed ID: 27279902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phononics of Graphene Interfaced with Flowing Ionic Fluid: An Avenue for High Spatial Resolution Flow Sensor Applications.
    Ahmadian Yazdi A; Xu J; Berry V
    ACS Nano; 2021 Apr; 15(4):6998-7005. PubMed ID: 33834760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-layer effect in graphene-enhanced Raman scattering.
    Ling X; Zhang J
    Small; 2010 Sep; 6(18):2020-5. PubMed ID: 20730826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-capacity glycolytic and mitochondrial oxidative metabolisms mediate the growth ability of glioblastoma.
    Kim J; Han J; Jang Y; Kim SJ; Lee MJ; Ryu MJ; Kweon GR; Heo JY
    Int J Oncol; 2015 Sep; 47(3):1009-16. PubMed ID: 26202438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cancer Cell Detection on the Surface of Top-Gated Monolayer Graphene via Raman Spectroscopy.
    Nanda SS; Kaushal S; Shin Y; Yun K; An SSA; Hembram KPSS; Papaefthymiou GC; Yi DK
    ACS Appl Bio Mater; 2021 Feb; 4(2):1493-1498. PubMed ID: 35014498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene Fermi Level-Guided Attachment of Single Exoelectrogens and Induced Interfacial Doping.
    Nemade R; Cotts S; Berry V
    ACS Appl Mater Interfaces; 2024 Feb; 16(5):5548-5553. PubMed ID: 38287002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photo-organometallic, Nanoparticle Nucleation on Graphene for Cascaded Doping.
    Che S; Behura SK; Berry V
    ACS Nano; 2019 Nov; 13(11):12929-12938. PubMed ID: 31609585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene quantum dots interfaced with single bacterial spore for bio-electromechanical devices: a graphene cytobot.
    Sreeprasad TS; Nguyen P; Alshogeathri A; Hibbeler L; Martinez F; McNeil N; Berry V
    Sci Rep; 2015 Mar; 5():9138. PubMed ID: 25774962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of layer stacking on the combination Raman modes in graphene.
    Rao R; Podila R; Tsuchikawa R; Katoch J; Tishler D; Rao AM; Ishigami M
    ACS Nano; 2011 Mar; 5(3):1594-9. PubMed ID: 21204569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene Interfaced with Biological Cells: Opportunities and Challenges.
    Nguyen P; Berry V
    J Phys Chem Lett; 2012 Apr; 3(8):1024-9. PubMed ID: 26286566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering.
    Feng S; Dos Santos MC; Carvalho BR; Lv R; Li Q; Fujisawa K; Elías AL; Lei Y; Perea-López N; Endo M; Pan M; Pimenta MA; Terrones M
    Sci Adv; 2016 Jul; 2(7):e1600322. PubMed ID: 27532043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman spectroscopy with graphenated anodized aluminum oxide substrates.
    Banerjee A; Li RQ; Grebel H
    Nanotechnology; 2009 Jul; 20(29):295502. PubMed ID: 19567957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glioblastoma Multiforme heterogeneity profiling with solid-state micropores.
    Abdallah MG; Almugaiteeb TI; Raza MU; Battiste JD; Kim YT; Iqbal SM
    Biomed Microdevices; 2019 Aug; 21(4):79. PubMed ID: 31414186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman 2D-band splitting in graphene: theory and experiment.
    Frank O; Mohr M; Maultzsch J; Thomsen C; Riaz I; Jalil R; Novoselov KS; Tsoukleri G; Parthenios J; Papagelis K; Kavan L; Galiotis C
    ACS Nano; 2011 Mar; 5(3):2231-9. PubMed ID: 21319849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulating the charge-transfer enhancement in GERS using an electrical field under vacuum and an n/p-doping atmosphere.
    Xu H; Chen Y; Xu W; Zhang H; Kong J; Dresselhaus MS; Zhang J
    Small; 2011 Oct; 7(20):2945-52. PubMed ID: 21901822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping Local Quantum Capacitance and Charged Impurities in Graphene via Plasmonic Impedance Imaging.
    Shan X; Chen S; Wang H; Chen Z; Guan Y; Wang Y; Wang S; Chen HY; Tao N
    Adv Mater; 2015 Oct; 27(40):6213-9. PubMed ID: 26356349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-enzymatic glucose sensing by enhanced Raman spectroscopy on flexible 'as-grown' CVD graphene.
    Chattopadhyay S; Li MS; Kumar Roy P; Wu CT
    Analyst; 2015 Jun; 140(12):3935-41. PubMed ID: 25939991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.