These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 27934398)

  • 1. Energetic and Dynamic Analysis of Transport of Na
    Song Y; Lee JH; Hwang H; Schatz GC; Hwang H
    J Phys Chem B; 2016 Nov; 120(46):11912-11922. PubMed ID: 27934398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational Effects in the Transport of Glucose through a Cyclic Peptide Nanotube: A Molecular Dynamics Simulation Study.
    Seo Y; Song Y; Schatz GC; Hwang H
    J Phys Chem B; 2018 Aug; 122(34):8174-8184. PubMed ID: 30086632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Dynamics Simulation Study of the Protonation State Dependence of Glutamic Acid Transport through a Cyclic Peptide Nanotube.
    Kim N; Lee JH; Song Y; Lee JH; Schatz GC; Hwang H
    J Phys Chem B; 2023 Jul; 127(27):6061-6072. PubMed ID: 37369069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steered molecular dynamics studies of the potential of mean force of a Na+ or K+ ion in a cyclic peptide nanotube.
    Hwang H; Schatz GC; Ratner MA
    J Phys Chem B; 2006 Dec; 110(51):26448-60. PubMed ID: 17181305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrophoretic Transport of Na(+) and K(+) Ions Within Cyclic Peptide Nanotubes.
    Carvajal-Diaz JA; Cagin T
    J Phys Chem B; 2016 Aug; 120(32):7872-9. PubMed ID: 27448165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study of stability and transport of molecules through cyclic peptide nanotube and aquaporin: a molecular dynamics simulation approach.
    Maroli N; Kolandaivel P
    J Biomol Struct Dyn; 2020 Jan; 38(1):186-199. PubMed ID: 30678549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport behavior of a single Ca(2+), K(+), and Na(+) in a water-filled transmembrane cyclic peptide nanotube.
    Yan X; Fan J; Yu Y; Xu J; Zhang M
    J Chem Inf Model; 2015 May; 55(5):998-1011. PubMed ID: 25894098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulation study of the effect of DMSO on structural and permeation properties of DMPC lipid bilayers.
    Lin J; Novak B; Moldovan D
    J Phys Chem B; 2012 Feb; 116(4):1299-308. PubMed ID: 22191390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coarse-grained molecular dynamics study of cyclic peptide nanotube insertion into a lipid bilayer.
    Hwang H
    J Phys Chem A; 2009 Apr; 113(16):4780-7. PubMed ID: 19035669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Passive Transmembrane Permeation Mechanisms of Monovalent Ions Explored by Molecular Dynamics Simulations.
    Zhang HY; Xu Q; Wang YK; Zhao TZ; Hu D; Wei DQ
    J Chem Theory Comput; 2016 Oct; 12(10):4959-4969. PubMed ID: 27599103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Na+, K+, and Ca2+ on the structures of anionic lipid bilayers and biological implication.
    Yang H; Xu Y; Gao Z; Mao Y; Du Y; Jiang H
    J Phys Chem B; 2010 Dec; 114(50):16978-88. PubMed ID: 21126040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conductance simulation of the purinergic P2X2, P2X4, and P2X7 ionic channels using a combined Brownian dynamics and molecular dynamics approach.
    Turchenkov DA; Bystrov VS
    J Phys Chem B; 2014 Aug; 118(31):9119-27. PubMed ID: 25006754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All-atom molecular dynamics simulations of an artificial sodium channel in a lipid bilayer: the effect of water solvation/desolvation of the sodium ion.
    Skelton AA; Khedkar VM; Fried JR
    J Biomol Struct Dyn; 2016; 34(3):529-39. PubMed ID: 26046587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics investigation of an oriented cyclic peptide nanotube in DMPC bilayers.
    Tarek M; Maigret B; Chipot C
    Biophys J; 2003 Oct; 85(4):2287-98. PubMed ID: 14507693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Dynamics Simulations of Ion Selectivity in a Claudin-15 Paracellular Channel.
    Alberini G; Benfenati F; Maragliano L
    J Phys Chem B; 2018 Dec; 122(48):10783-10792. PubMed ID: 30372067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion current calculations based on three dimensional Poisson-Nernst-Planck theory for a cyclic peptide nanotube.
    Hwang H; Schatz GC; Ratner MA
    J Phys Chem B; 2006 Apr; 110(13):6999-7008. PubMed ID: 16571014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer simulations of the diffusion of Na
    Salih R; Matthai CC
    J Chem Phys; 2017 Mar; 146(10):105101. PubMed ID: 28298128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MD Simulations on the Transport Behaviors of Mixed Na
    Zhang L; Fan J; Qu M
    J Chem Inf Model; 2019 Jan; 59(1):170-180. PubMed ID: 30474974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the origin of the ion selectivity of the KcsA potassium channel.
    Burykin A; Kato M; Warshel A
    Proteins; 2003 Aug; 52(3):412-26. PubMed ID: 12866052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potassium and sodium ions in a potassium channel studied by molecular dynamics simulations.
    Biggin PC; Smith GR; Shrivastava I; Choe S; Sansom MS
    Biochim Biophys Acta; 2001 Feb; 1510(1-2):1-9. PubMed ID: 11342142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.