BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 27934536)

  • 1. Microfluidic Manufacturing of Polymeric Nanoparticles: Comparing Flow Control of Multiscale Structure in Single-Phase Staggered Herringbone and Two-Phase Reactors.
    Xu Z; Lu C; Riordon J; Sinton D; Moffitt MG
    Langmuir; 2016 Dec; 32(48):12781-12789. PubMed ID: 27934536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling Structure and Function of Polymeric Drug Delivery Nanoparticles Using Microfluidics.
    Bains A; Cao Y; Kly S; Wulff JE; Moffitt MG
    Mol Pharm; 2017 Aug; 14(8):2595-2606. PubMed ID: 28520436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of chemical and processing variables on paclitaxel-loaded polymer nanoparticles prepared using microfluidics.
    Bains A; Moffitt MG
    J Colloid Interface Sci; 2017 Dec; 508():203-213. PubMed ID: 28841478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic Processing Approach to Controlling Drug Delivery Properties of Curcumin-Loaded Block Copolymer Nanoparticles.
    Chen R; Wulff JE; Moffitt MG
    Mol Pharm; 2018 Oct; 15(10):4517-4528. PubMed ID: 30179485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Convex Grooves in Staggered Herringbone Mixer Improve Mixing Efficiency of Laminar Flow in Microchannel.
    Kwak TJ; Nam YG; Najera MA; Lee SW; Strickler JR; Chang WJ
    PLoS One; 2016; 11(11):e0166068. PubMed ID: 27814386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale Control of Hierarchical Structure in Crystalline Block Copolymer Nanoparticles Using Microfluidics.
    Bains A; Cao Y; Moffitt MG
    Macromol Rapid Commun; 2015 Nov; 36(22):2000-5. PubMed ID: 26305569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic Manufacturing of SN-38-Loaded Polymer Nanoparticles with Shear Processing Control of Drug Delivery Properties.
    Cao Y; Silverman L; Lu C; Hof R; Wulff JE; Moffitt MG
    Mol Pharm; 2019 Jan; 16(1):96-107. PubMed ID: 30477300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assembly of Fluorescent Polymer Nanoparticles Using Different Microfluidic Mixers.
    Chen H; Celik AE; Mutschler A; Combes A; Runser A; Klymchenko AS; Lecommandoux S; Serra CA; Reisch A
    Langmuir; 2022 Jul; 38(26):7945-7955. PubMed ID: 35731957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous synthesis of drug-loaded nanoparticles using microchannel emulsification and numerical modeling: effect of passive mixing.
    Ortiz de Solorzano I; Uson L; Larrea A; Miana M; Sebastian V; Arruebo M
    Int J Nanomedicine; 2016; 11():3397-416. PubMed ID: 27524896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic synthesis of dye-loaded polycaprolactone-block-poly(ethylene oxide) nanoparticles: Insights into flow-directed loading and in vitro release for drug delivery.
    Bains A; Wulff JE; Moffitt MG
    J Colloid Interface Sci; 2016 Aug; 475():136-148. PubMed ID: 27163840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A practical guide to the staggered herringbone mixer.
    Williams MS; Longmuir KJ; Yager P
    Lab Chip; 2008 Jul; 8(7):1121-9. PubMed ID: 18584088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Process Robustness in Lipid Nanoparticle Production: A Comparison of Microfluidic and Turbulent Jet Mixing.
    O'Brien Laramy MN; Costa AP; Cebrero YM; Joseph J; Sarode A; Zang N; Kim LJ; Hofmann K; Wang S; Goyon A; Koenig SG; Hammel M; Hura GL
    Mol Pharm; 2023 Aug; 20(8):4285-4296. PubMed ID: 37462906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient gas-liquid contact using microfluidic membrane devices with staggered herringbone mixers.
    Femmer T; Eggersdorfer ML; Kuehne AJ; Wessling M
    Lab Chip; 2015 Aug; 15(15):3132-7. PubMed ID: 26087992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finding the optimal design of a passive microfluidic mixer.
    Wang J; Zhang N; Chen J; Rodgers VGJ; Brisk P; Grover WH
    Lab Chip; 2019 Nov; 19(21):3618-3627. PubMed ID: 31576868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of large-scale manufacturing of biopolymeric and lipid nanoparticles using microfluidic swirl mixers.
    Tomeh MA; Mansor MH; Hadianamrei R; Sun W; Zhao X
    Int J Pharm; 2022 May; 620():121762. PubMed ID: 35472511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic Shear Processing Control of Biological Reduction Stimuli-Responsive Polymer Nanoparticles for Drug Delivery.
    Huang Y; Jazani AM; Howell EP; Reynolds LA; Oh JK; Moffitt MG
    ACS Biomater Sci Eng; 2020 Sep; 6(9):5069-5083. PubMed ID: 33455300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PDMS-based turbulent microfluidic mixer.
    You JB; Kang K; Tran TT; Park H; Hwang WR; Kim JM; Im SG
    Lab Chip; 2015 Apr; 15(7):1727-35. PubMed ID: 25671438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated and Continuous Production of Polymeric Nanoparticles.
    Bovone G; Steiner F; Guzzi EA; Tibbitt MW
    Front Bioeng Biotechnol; 2019; 7():423. PubMed ID: 31921826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography.
    Xi C; Marks DL; Parikh DS; Raskin L; Boppart SA
    Proc Natl Acad Sci U S A; 2004 May; 101(20):7516-21. PubMed ID: 15136742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled Microfluidic Synthesis of Biological Stimuli-Responsive Polymer Nanoparticles.
    Huang Y; Moini Jazani A; Howell EP; Oh JK; Moffitt MG
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):177-190. PubMed ID: 31820915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.