BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 27934901)

  • 1. Towards peptide vaccines against Zika virus: Immunoinformatics combined with molecular dynamics simulations to predict antigenic epitopes of Zika viral proteins.
    Mirza MU; Rafique S; Ali A; Munir M; Ikram N; Manan A; Salo-Ahen OM; Idrees M
    Sci Rep; 2016 Dec; 6():37313. PubMed ID: 27934901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunoinformatics guided rational design of a next generation multi epitope based peptide (MEBP) vaccine by exploring Zika virus proteome.
    Shahid F; Ashfaq UA; Javaid A; Khalid H
    Infect Genet Evol; 2020 Jun; 80():104199. PubMed ID: 31962160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational prediction and analysis of potential antigenic CTL epitopes in Zika virus: A first step towards vaccine development.
    Dikhit MR; Ansari MY; Vijaymahantesh ; Kalyani ; Mansuri R; Sahoo BR; Dehury B; Amit A; Topno RK; Sahoo GC; Ali V; Bimal S; Das P
    Infect Genet Evol; 2016 Nov; 45():187-197. PubMed ID: 27590716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From ZikV genome to vaccine: in silico approach for the epitope-based peptide vaccine against Zika virus envelope glycoprotein.
    Alam A; Ali S; Ahamad S; Malik MZ; Ishrat R
    Immunology; 2016 Dec; 149(4):386-399. PubMed ID: 27485738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico construction of a multiepitope Zika virus vaccine using immunoinformatics tools.
    Antonelli ACB; Almeida VP; de Castro FOF; Silva JM; Pfrimer IAH; Cunha-Neto E; Maranhão AQ; Brígido MM; Resende RO; Bocca AL; Fonseca SG
    Sci Rep; 2022 Jan; 12(1):53. PubMed ID: 34997041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing B- and T-cell multi-epitope based subunit vaccine using immunoinformatics approach to control Zika virus infection.
    Kumar Pandey R; Ojha R; Mishra A; Kumar Prajapati V
    J Cell Biochem; 2018 Sep; 119(9):7631-7642. PubMed ID: 29900580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of T-cell Driven Subunit Vaccines from Zika Virus Genome: An Immunoinformatics Approach.
    Pradhan D; Yadav M; Verma R; Khan NS; Jena L; Jain AK
    Interdiscip Sci; 2017 Dec; 9(4):468-477. PubMed ID: 29094318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of potential MHC-I allele-specific epitopes in Zika virus proteins and the effects of mutations on peptide-MHC-I interaction studied using in silico approaches.
    da Costa AS; Fernandes TVA; Bello ML; de Souza TLF
    Comput Biol Chem; 2021 Jun; 92():107459. PubMed ID: 33636637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immuno-informatics-based Identification of Novel Potential B Cell and T Cell Epitopes to Fight Zika Virus Infections.
    Ezzemani W; Windisch MP; Kettani A; Altawalah H; Nourlil J; Benjelloun S; Ezzikouri S
    Infect Disord Drug Targets; 2021; 21(4):572-581. PubMed ID: 32778040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Bioinformatics approach to designing a Zika virus vaccine.
    Dey S; Nandy A; Basak SC; Nandy P; Das S
    Comput Biol Chem; 2017 Jun; 68():143-152. PubMed ID: 28342423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational Design of Zika Virus Subunit Vaccine with Enhanced Efficacy.
    Tai W; Chen J; Zhao G; Geng Q; He L; Chen Y; Zhou Y; Li F; Du L
    J Virol; 2019 Sep; 93(17):. PubMed ID: 31189716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De Novo Structural Modeling and Conserved Epitopes Prediction of Zika Virus Envelop Protein for Vaccine Development.
    Ashfaq UA; Ahmed B
    Viral Immunol; 2016 Sep; 29(7):436-43. PubMed ID: 27438351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring dengue genome to construct a multi-epitope based subunit vaccine by utilizing immunoinformatics approach to battle against dengue infection.
    Ali M; Pandey RK; Khatoon N; Narula A; Mishra A; Prajapati VK
    Sci Rep; 2017 Aug; 7(1):9232. PubMed ID: 28835708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational design of B-cell and T-cell multi epitope-based vaccine against Zika virus, an
    Ganji M; Bakhshi S; Ahmadi K; Shoari A; Moeini S; Ghaemi A
    J Biomol Struct Dyn; 2024 Apr; 42(7):3426-3440. PubMed ID: 37190978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zika virus structural biology and progress in vaccine development.
    Lin HH; Yip BS; Huang LM; Wu SC
    Biotechnol Adv; 2018; 36(1):47-53. PubMed ID: 28916391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunization with phage virus-like particles displaying Zika virus potential B-cell epitopes neutralizes Zika virus infection of monkey kidney cells.
    Basu R; Zhai L; Contreras A; Tumban E
    Vaccine; 2018 Feb; 36(10):1256-1264. PubMed ID: 29395533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of a multi-epitope Zika virus vaccine candidate - an
    Ezzemani W; Windisch MP; Altawalah H; Guessous F; Saile R; Benjelloun S; Kettani A; Ezzikouri S
    J Biomol Struct Dyn; 2023 Jun; 41(9):3762-3771. PubMed ID: 35318896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential targets for therapeutic intervention and structure based vaccine design against Zika virus.
    Qadir A; Riaz M; Saeed M; Shahzad-Ul-Hussan S
    Eur J Med Chem; 2018 Aug; 156():444-460. PubMed ID: 30015077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of naturally processed Zika virus peptides by mass spectrometry and validation of memory T cell recall responses in Zika convalescent subjects.
    Crooke SN; Ovsyannikova IG; Kennedy RB; Poland GA
    PLoS One; 2021; 16(6):e0252198. PubMed ID: 34077451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogenesys and homology modeling in Zika virus epidemic: food for thought.
    Angeletti S; Lo Presti A; Giovanetti M; Grifoni A; Amicosante M; Ciotti M; Alcantara LJ; Cella E; Ciccozzi M
    Pathog Glob Health; 2016; 110(7-8):269-274. PubMed ID: 27670692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.