BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 27934907)

  • 1. High-speed swept source optical coherence Doppler tomography for deep brain microvascular imaging.
    Chen W; You J; Gu X; Du C; Pan Y
    Sci Rep; 2016 Dec; 6():38786. PubMed ID: 27934907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cerebral capillary flow imaging by wavelength-division-multiplexing swept-source optical Doppler tomography.
    Chen W; Du C; Pan Y
    J Biophotonics; 2018 Aug; 11(8):e201800004. PubMed ID: 29603668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scanning laser-Doppler flowmetry of rat cerebral circulation during cortical spreading depression.
    Nielsen AN; Fabricius M; Lauritzen M
    J Vasc Res; 2000; 37(6):513-22. PubMed ID: 11146405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Swept-source optical coherence tomography powered by a 1.3-μm vertical cavity surface emitting laser enables 2.3-mm-deep brain imaging in mice in vivo.
    Choi WJ; Wang RK
    J Biomed Opt; 2015 Oct; 20(10):106004. PubMed ID: 26447860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of flumazenil during administration of midazolam on pial vessel diameter and regional cerebral blood flow in cats.
    Kumano H; Shimomura T; Furuya H; Yomosa H; Okuda T; Sakaki T; Kuro M
    Acta Anaesthesiol Scand; 1993 Aug; 37(6):567-70. PubMed ID: 8213021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cocaine-induced cortical microischemia in the rodent brain: clinical implications.
    Ren H; Du C; Yuan Z; Park K; Volkow ND; Pan Y
    Mol Psychiatry; 2012 Oct; 17(10):1017-25. PubMed ID: 22124273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying labial blood flow using optical Doppler tomography.
    Otis LL; Piao D; Gibson CW; Zhu Q
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2004 Aug; 98(2):189-94. PubMed ID: 15316546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of blood flow and volume in arterioles and venules of the rat cerebral cortex using functional micro-ultrasound.
    van Raaij ME; Lindvere L; Dorr A; He J; Sahota B; Foster FS; Stefanovic B
    Neuroimage; 2012 Nov; 63(3):1030-7. PubMed ID: 22871388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative imaging of microvascular blood flow networks in deep cortical layers by 1310 nm μODT.
    You J; Zhang Q; Park K; Du C; Pan Y
    Opt Lett; 2015 Sep; 40(18):4293-6. PubMed ID: 26371919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic 3D imaging of cerebral blood flow in awake mice using self-supervised-learning-enhanced optical coherence Doppler tomography.
    Pan Y; Park K; Ren J; Volkow ND; Ling H; Koretsky AP; Du C
    Commun Biol; 2023 Mar; 6(1):298. PubMed ID: 36944712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wide dynamic range high-speed three-dimensional quantitative OCT angiography with a hybrid-beam scan.
    Park T; Jang SJ; Han M; Ryu S; Oh WY
    Opt Lett; 2018 May; 43(10):2237-2240. PubMed ID: 29762561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source.
    Choi W; Potsaid B; Jayaraman V; Baumann B; Grulkowski I; Liu JJ; Lu CD; Cable AE; Huang D; Duker JS; Fujimoto JG
    Opt Lett; 2013 Feb; 38(3):338-40. PubMed ID: 23381430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical coherence Doppler tomography for quantitative cerebral blood flow imaging.
    You J; Du C; Volkow ND; Pan Y
    Biomed Opt Express; 2014 Sep; 5(9):3217-30. PubMed ID: 25401033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of cocaine-induced cortical blood flow changes using laser speckle contrast imaging and Doppler optical coherence tomography.
    Luo Z; Yuan Z; Tully M; Pan Y; Du C
    Appl Opt; 2009 Apr; 48(10):D247-55. PubMed ID: 19340115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical coherence Doppler tomography quantifies laser speckle contrast imaging for blood flow imaging in the rat cerebral cortex.
    Luo Z; Wang Z; Yuan Z; Du C; Pan Y
    Opt Lett; 2008 May; 33(10):1156-8. PubMed ID: 18483544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-parametric imaging of murine brain using spectral and time domain optical coherence tomography.
    Bukowska D; Ruminski D; Szlag D; Grulkowski I; Wlodarczyk J; Szkulmowski M; Wilczynski G; Gorczynska I; Wojtkowski M
    J Biomed Opt; 2012 Oct; 17(10):101515. PubMed ID: 23223991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebral blood flow imaged with ultrahigh-resolution optical coherence angiography and Doppler tomography.
    Ren H; Du C; Pan Y
    Opt Lett; 2012 Apr; 37(8):1388-90. PubMed ID: 22513695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasensitive detection of 3D cerebral microvascular network dynamics in vivo.
    Pan Y; You J; Volkow ND; Park K; Du C
    Neuroimage; 2014 Dec; 103():492-501. PubMed ID: 25192654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A deep-learning-based approach for noise reduction in high-speed optical coherence Doppler tomography.
    Li A; Du C; Volkow ND; Pan Y
    J Biophotonics; 2020 Oct; 13(10):e202000084. PubMed ID: 32649059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible wide-field optical micro-angiography based on Fourier-domain multiplexed dual-beam swept source optical coherence tomography.
    Song S; Xu J; Wang RK
    J Biophotonics; 2018 Mar; 11(3):. PubMed ID: 28941235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.