These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 27935048)
1. Height-related scaling of phloem anatomy and the evolution of sieve element end wall types in woody plants. Liesche J; Pace MR; Xu Q; Li Y; Chen S New Phytol; 2017 Apr; 214(1):245-256. PubMed ID: 27935048 [TBL] [Abstract][Full Text] [Related]
2. Scaling of phloem hydraulic resistance in stems and leaves of the understory angiosperm shrub Illicium parviflorum. Losada JM; Holbrook NM Am J Bot; 2019 Feb; 106(2):244-259. PubMed ID: 30793276 [TBL] [Abstract][Full Text] [Related]
3. Ontogenetic scaling of phloem sieve tube anatomy and hydraulic resistance with tree height in Quercus rubra. Clerx LE; Rockwell FE; Savage JA; Holbrook NM Am J Bot; 2020 Jun; 107(6):852-863. PubMed ID: 32468597 [TBL] [Abstract][Full Text] [Related]
4. Secondary phloem diversity and evolution in Bignonieae (Bignoniaceae). Pace MR; Alcantara S; Lohmann LG; Angyalossy V Ann Bot; 2015 Sep; 116(3):333-58. PubMed ID: 26311709 [TBL] [Abstract][Full Text] [Related]
5. Slower phloem transport in gymnosperm trees can be attributed to higher sieve element resistance. Liesche J; Windt C; Bohr T; Schulz A; Jensen KH Tree Physiol; 2015 Apr; 35(4):376-86. PubMed ID: 25787331 [TBL] [Abstract][Full Text] [Related]
6. Diameters of phloem sieve elements can predict stem growth rates of woody plants. Tang Y; Yin S; Pace MR; Gerolamo CS; Nogueira A; Zuntini AR; Lohmann LG; Plath M; Liesche J Tree Physiol; 2022 Aug; 42(8):1560-1569. PubMed ID: 35218199 [TBL] [Abstract][Full Text] [Related]
7. Maintenance of carbohydrate transport in tall trees. Savage JA; Beecher SD; Clerx L; Gersony JT; Knoblauch J; Losada JM; Jensen KH; Knoblauch M; Holbrook NM Nat Plants; 2017 Dec; 3(12):965-972. PubMed ID: 29209083 [TBL] [Abstract][Full Text] [Related]
8. Exploring the bark thickness-stem diameter relationship: clues from lianas, successive cambia, monocots and gymnosperms. Rosell JA; Olson ME; Anfodillo T; Martínez-Méndez N New Phytol; 2017 Jul; 215(2):569-581. PubMed ID: 28631326 [TBL] [Abstract][Full Text] [Related]
9. Scanning Electron Microscopy of the Phloem. Mullendore DL Methods Mol Biol; 2019; 2014():29-35. PubMed ID: 31197784 [TBL] [Abstract][Full Text] [Related]
10. Secondary stem anatomy and uses of four drought-deciduous species of a tropical dry forest in México. Isaias AQ; Velázquez Núñez M; Solares Arenas F; de la Paz Pérez Olvera C; Torre-Blanco A Rev Biol Trop; 2005; 53(1-2):29-48. PubMed ID: 17354418 [TBL] [Abstract][Full Text] [Related]
11. Conserved autophagy and diverse cell wall composition: unifying features of vascular tissues in evolutionarily distinct plants. Michalak KM; Wojciechowska N; Marzec-Schmidt K; Bagniewska-Zadworna A Ann Bot; 2024 Apr; 133(4):559-572. PubMed ID: 38324309 [TBL] [Abstract][Full Text] [Related]
12. The hydraulic architecture of Ginkgo leaves. Carvalho MR; Turgeon R; Owens T; Niklas KJ Am J Bot; 2017 Sep; 104(9):1285-1298. PubMed ID: 29885239 [TBL] [Abstract][Full Text] [Related]
13. Evolution of disparity between the regular and variant phloem in Bignonieae (Bignoniaceae). Pace MR; Lohmann LG; Angyalossy V Am J Bot; 2011 Apr; 98(4):602-18. PubMed ID: 21613161 [TBL] [Abstract][Full Text] [Related]
14. Phloem transport in gymnosperms: a question of pressure and resistance. Liesche J; Schulz A Curr Opin Plant Biol; 2018 Jun; 43():36-42. PubMed ID: 29304388 [TBL] [Abstract][Full Text] [Related]
15. Conductivity of the phloem in mango (Mangifera indica L.). Barceló-Anguiano M; Hormaza JI; Losada JM Hortic Res; 2021 Jul; 8(1):150. PubMed ID: 34193860 [TBL] [Abstract][Full Text] [Related]
16. Sieve Plate Pores in the Phloem and the Unknowns of Their Formation. Kalmbach L; Helariutta Y Plants (Basel); 2019 Jan; 8(2):. PubMed ID: 30678196 [TBL] [Abstract][Full Text] [Related]
17. A Callixylon (Archaeopteridales, Progymnospermopsida) trunk with preserved secondary phloem from the Late Devonian of Morocco. Decombeix AL; Meyer-Berthaud B Am J Bot; 2013 Nov; 100(11):2219-30. PubMed ID: 24169429 [TBL] [Abstract][Full Text] [Related]
18. Similarities and differences in the balances between leaf, xylem and phloem structures in Fraxinus ornus along an environmental gradient. Kiorapostolou N; Petit G Tree Physiol; 2019 Feb; 39(2):234-242. PubMed ID: 30189046 [TBL] [Abstract][Full Text] [Related]
19. Putative pectate lyase PLL12 and callose deposition through polar CALS7 are necessary for long-distance phloem transport in Arabidopsis. Kalmbach L; Bourdon M; Belevich I; Safran J; Lemaire A; Heo JO; Otero S; Blob B; Pelloux J; Jokitalo E; Helariutta Y Curr Biol; 2023 Mar; 33(5):926-939.e9. PubMed ID: 36805125 [TBL] [Abstract][Full Text] [Related]
20. The impacts of water stress on phloem transport in Douglas-fir trees. Woodruff DR Tree Physiol; 2014 Jan; 34(1):5-14. PubMed ID: 24336611 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]