These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 27935097)

  • 1. Streaming potential of superhydrophobic microchannels.
    Park HM; Kim D; Kim SY
    Electrophoresis; 2017 Mar; 38(5):689-701. PubMed ID: 27935097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method to determine zeta potential and Navier slip coefficient of microchannels.
    Park HM
    J Colloid Interface Sci; 2010 Jul; 347(1):132-41. PubMed ID: 20362996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extension of the Helmholtz-Smoluchowski velocity to the hydrophobic microchannels with velocity slip.
    Park HM; Kim TW
    Lab Chip; 2009 Jan; 9(2):291-6. PubMed ID: 19107287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the Navier slip coefficient of microchannels exploiting the streaming potential.
    Park HM
    Electrophoresis; 2012 Mar; 33(6):906-15. PubMed ID: 22528410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A method for simultaneous estimation of inhomogeneous zeta potential and slip coefficient in microchannels.
    Park HM; Choi YJ
    Anal Chim Acta; 2008 Jun; 616(2):160-9. PubMed ID: 18482599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nano-scale superhydrophobicity: suppression of protein adsorption and promotion of flow-induced detachment.
    Koc Y; de Mello AJ; McHale G; Newton MI; Roach P; Shirtcliffe NJ
    Lab Chip; 2008 Apr; 8(4):582-6. PubMed ID: 18369513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boundary slip study on hydrophilic, hydrophobic, and superhydrophobic surfaces with dynamic atomic force microscopy.
    Bhushan B; Wang Y; Maali A
    Langmuir; 2009 Jul; 25(14):8117-21. PubMed ID: 19402684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apparent slip of shear thinning fluid in a microchannel with a superhydrophobic wall.
    Patlazhan S; Vagner S
    Phys Rev E; 2017 Jul; 96(1-1):013104. PubMed ID: 29347200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An atomistic-continuum hybrid simulation of fluid flows over superhydrophobic surfaces.
    Li Q; He GW
    Biomicrofluidics; 2009 May; 3(2):22409. PubMed ID: 19693344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electro-osmotic flow over a charged superhydrophobic surface.
    Zhao H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066314. PubMed ID: 20866529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable hydrodynamic characteristics in microchannels with biomimetic superhydrophobic (lotus leaf replica) walls.
    Dey R; Raj M K; Bhandaru N; Mukherjee R; Chakraborty S
    Soft Matter; 2014 May; 10(19):3451-62. PubMed ID: 24647804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Possibility of Obtaining Two Orders of Magnitude Larger Electrokinetic Streaming Potentials, through Liquid Infiltrated Surfaces.
    Fan B; Bandaru PR
    Langmuir; 2020 Sep; 36(34):10238-10243. PubMed ID: 32787034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linear stability of acoustic streaming flows in microchannels.
    Chu AK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066311. PubMed ID: 16486063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids.
    Niavarani A; Priezjev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011606. PubMed ID: 20365383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrokinetic Effects on Pressure-Driven Liquid Flows in Rectangular Microchannels.
    Yang C; Li D
    J Colloid Interface Sci; 1997 Oct; 194(1):95-107. PubMed ID: 9367589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrokinetic pumping effects of charged porous media in microchannels using the lattice Poisson-Boltzmann method.
    Wang M; Wang J; Chen S; Pan N
    J Colloid Interface Sci; 2006 Dec; 304(1):246-53. PubMed ID: 16989843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous estimation of zeta potential and slip coefficient in hydrophobic microchannels.
    Park HM; Kim TW
    Anal Chim Acta; 2007 Jun; 593(2):171-7. PubMed ID: 17543604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophoresis of particles with Navier velocity slip.
    Park HM
    Electrophoresis; 2013 Mar; 34(5):651-61. PubMed ID: 23229901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boundary streaming with Navier boundary condition.
    Xie JH; Vanneste J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063010. PubMed ID: 25019882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient zeta-potential measurements in hydrophobic, TOPAS microfluidic substrates.
    Tandon V; Bhagavatula SK; Kirby BJ
    Electrophoresis; 2009 Aug; 30(15):2656-67. PubMed ID: 19637218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.