These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 27935273)

  • 21. Molecular dynamics investigations of liquid-vapor interaction and adsorption of formaldehyde, oxocarbons, and water in graphitic slit pores.
    Huang PH; Hung SC; Huang MY
    Phys Chem Chem Phys; 2014 Aug; 16(29):15289-98. PubMed ID: 24942289
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Graphene: powder, flakes, ribbons, and sheets.
    James DK; Tour JM
    Acc Chem Res; 2013 Oct; 46(10):2307-18. PubMed ID: 23276286
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The evolution in graphitic surface wettability with first-principles quantum simulations: the counterintuitive role of water.
    Lu JY; Lai CY; Almansoori I; Chiesa M
    Phys Chem Chem Phys; 2018 Sep; 20(35):22636-22644. PubMed ID: 30131998
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The apparent surface free energy of rare earth oxides is governed by hydrocarbon adsorption.
    Oh J; Orejon D; Park W; Cha H; Sett S; Yokoyama Y; Thoreton V; Takata Y; Miljkovic N
    iScience; 2022 Jan; 25(1):103691. PubMed ID: 35036875
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Insight on Structure of Water and Ice Next to Graphene Using Surface-Sensitive Spectroscopy.
    Singla S; Anim-Danso E; Islam AE; Ngo Y; Kim SS; Naik RR; Dhinojwala A
    ACS Nano; 2017 May; 11(5):4899-4906. PubMed ID: 28448717
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insights into the wettability transition of nanosecond laser ablated surface under ambient air exposure.
    Yang Z; Liu X; Tian Y
    J Colloid Interface Sci; 2019 Jan; 533():268-277. PubMed ID: 30170278
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pathways to Structure-Property Relationships of Peptide-Materials Interfaces: Challenges in Predicting Molecular Structures.
    Walsh TR
    Acc Chem Res; 2017 Jul; 50(7):1617-1624. PubMed ID: 28665581
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carbon nanofluidics of rapid water transport for energy applications.
    Park HG; Jung Y
    Chem Soc Rev; 2014 Jan; 43(2):565-76. PubMed ID: 24141359
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Graphene drape minimizes the pinning and hysteresis of water drops on nanotextured rough surfaces.
    Singh E; Thomas AV; Mukherjee R; Mi X; Houshmand F; Peles Y; Shi Y; Koratkar N
    ACS Nano; 2013 Apr; 7(4):3512-21. PubMed ID: 23484526
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microwetting of supported graphene on hydrophobic surfaces revealed by polymerized interfacial femtodroplets.
    Peng S; Lohse D; Zhang X
    Langmuir; 2014 Aug; 30(33):10043-9. PubMed ID: 25087703
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of Airborne Hydrocarbons on the Wettability of Phase Change Nanoparticle Decorated Surfaces.
    Guo W; Chen B; Do VL; Ten Brink GH; Kooi BJ; Svetovoy VB; Palasantzas G
    ACS Nano; 2019 Nov; 13(11):13430-13438. PubMed ID: 31625718
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons.
    Brooks AJ; Lim HN; Kilduff JE
    Nanotechnology; 2012 Jul; 23(29):294008. PubMed ID: 22743805
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adsorption of gemini surfactants with dodecyl side chains and different spacers, including partially fluorinated spacers, on different surfaces: neutron reflectometry results.
    Li PX; Dong CC; Thomas RK
    Langmuir; 2011 Mar; 27(5):1844-52. PubMed ID: 21192685
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ambient-mediated wetting on smooth surfaces.
    Orejon D; Oh J; Preston DJ; Yan X; Sett S; Takata Y; Miljkovic N; Sefiane K
    Adv Colloid Interface Sci; 2024 Feb; 324():103075. PubMed ID: 38219342
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Graphitic carbon-water nonbonded interaction parameters.
    Wu Y; Aluru NR
    J Phys Chem B; 2013 Jul; 117(29):8802-13. PubMed ID: 23802763
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorption of DNA onto gold nanoparticles and graphene oxide: surface science and applications.
    Liu J
    Phys Chem Chem Phys; 2012 Aug; 14(30):10485-96. PubMed ID: 22739570
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Azide photochemistry for facile modification of graphitic surfaces: preparation of DNA-coated carbon nanotubes for biosensing.
    Moghaddam MJ; Yang W; Bojarski B; Gengenbach TR; Gao M; Zareie H; McCall MJ
    Nanotechnology; 2012 Oct; 23(42):425503. PubMed ID: 23037575
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Organic contamination of highly oriented pyrolytic graphite as studied by scanning electrochemical microscopy.
    Nioradze N; Chen R; Kurapati N; Khvataeva-Domanov A; Mabic S; Amemiya S
    Anal Chem; 2015 May; 87(9):4836-43. PubMed ID: 25843146
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxidation and degradation of graphitic materials by naphthalene-degrading bacteria.
    Liu L; Zhu C; Fan M; Chen C; Huang Y; Hao Q; Yang J; Wang H; Sun D
    Nanoscale; 2015 Aug; 7(32):13619-28. PubMed ID: 26205788
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surfactant-free water-processable photoconductive all-carbon composite.
    Tung VC; Huang JH; Tevis I; Kim F; Kim J; Chu CW; Stupp SI; Huang J
    J Am Chem Soc; 2011 Apr; 133(13):4940-7. PubMed ID: 21391674
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.