These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 27935307)

  • 21. pH-Induced Switchable Superwettability of Efficient Antibacterial Fabrics for Durable Selective Oil/Water Separation.
    Fu Y; Jin B; Zhang Q; Zhan X; Chen F
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):30161-30170. PubMed ID: 28805055
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relationship and Interconversion Between Superhydrophilicity, Underwater Superoleophilicity, Underwater Superaerophilicity, Superhydrophobicity, Underwater Superoleophobicity, and Underwater Superaerophobicity: A Mini-Review.
    Yong J; Yang Q; Hou X; Chen F
    Front Chem; 2020; 8():828. PubMed ID: 33134266
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A surface exhibiting superoleophobicity both in air and in seawater.
    Zhang G; Zhang X; Huang Y; Su Z
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):6400-3. PubMed ID: 23758754
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Underwater superoleophilicity to superoleophobicity: role of trapped air.
    Jin M; Li S; Wang J; Xue Z; Liao M; Wang S
    Chem Commun (Camb); 2012 Dec; 48(96):11745-7. PubMed ID: 23113322
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reversible Wettability between Underwater Superoleophobicity and Superhydrophobicity of Stainless Steel Mesh for Efficient Oil-Water Separation.
    Wang J; Xu J; Chen G; Lian Z; Yu H
    ACS Omega; 2021 Jan; 6(1):77-84. PubMed ID: 33458461
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study of factors governing oil-water separation process using TiO₂ films prepared by spray deposition of nanoparticle dispersions.
    Gondal MA; Sadullah MS; Dastageer MA; McKinley GH; Panchanathan D; Varanasi KK
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):13422-9. PubMed ID: 25058802
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simple and Low-Cost Oil/Water Separation Based on the Underwater Superoleophobicity of the Existing Materials in Our Life or Nature.
    Bian H; Yong J; Yang Q; Hou X; Chen F
    Front Chem; 2020; 8():507. PubMed ID: 32733843
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Micro/nanoscale hierarchical structured ZnO mesh film for separation of water and oil.
    Tian D; Zhang X; Wang X; Zhai J; Jiang L
    Phys Chem Chem Phys; 2011 Aug; 13(32):14606-10. PubMed ID: 21769332
    [TBL] [Abstract][Full Text] [Related]  

  • 29. WET-Induced Layered Organohydrogel as Bioinspired "Sticky-Slippy Skin" for Robust Underwater Oil-Repellency.
    Wan X; Jia L; Liu X; Dai B; Jiang L; Wang S
    Adv Mater; 2022 Apr; 34(16):e2110408. PubMed ID: 35180331
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Designing heterogeneous chemical composition on hierarchical structured copper substrates for the fabrication of superhydrophobic surfaces with controlled adhesion.
    Cheng Z; Hou R; Du Y; Lai H; Fu K; Zhang N; Sun K
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8753-60. PubMed ID: 23919678
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation of smart and reversible wettability cellulose fabrics for oil/water separation using a facile and economical method.
    Fan T; Qian Q; Hou Z; Liu Y; Lu M
    Carbohydr Polym; 2018 Nov; 200():63-71. PubMed ID: 30177209
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/philicity and oleophobicity/philicity.
    Jung YC; Bhushan B
    Langmuir; 2009 Dec; 25(24):14165-73. PubMed ID: 19637877
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Clam's shell inspired high-energy inorganic coatings with underwater low adhesive superoleophobicity.
    Liu X; Zhou J; Xue Z; Gao J; Meng J; Wang S; Jiang L
    Adv Mater; 2012 Jul; 24(25):3401-5. PubMed ID: 22648962
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Straightforward oxidation of a copper substrate produces an underwater superoleophobic mesh for oil/water separation.
    Liu N; Chen Y; Lu F; Cao Y; Xue Z; Li K; Feng L; Wei Y
    Chemphyschem; 2013 Oct; 14(15):3489-94. PubMed ID: 24106053
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NIR-Triggered Photothermal Responsive Coatings with Remote and Localized Tunable Underwater Oil Adhesion.
    Shang B; Chen M; Wu L
    Small; 2019 Aug; 15(31):e1901888. PubMed ID: 31192535
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In situ reversible underwater superwetting transition by electrochemical atomic alternation.
    Wang Q; Xu B; Hao Q; Wang D; Liu H; Jiang L
    Nat Commun; 2019 Mar; 10(1):1212. PubMed ID: 30872585
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How To Obtain Six Different Superwettabilities on a Same Microstructured Pattern: Relationship between Various Superwettabilities in Different Solid/Liquid/Gas Systems.
    Yong J; Singh SC; Zhan Z; Chen F; Guo C
    Langmuir; 2019 Jan; 35(4):921-927. PubMed ID: 30609378
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioinspired Underwater Superoleophobic Membrane Based on a Graphene Oxide Coated Wire Mesh for Efficient Oil/Water Separation.
    Liu YQ; Zhang YL; Fu XY; Sun HB
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20930-6. PubMed ID: 26302148
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reversibly switching water droplets wettability on hierarchical structured Cu
    Xu S; Sheng R; Cao Y; Yan J
    Sci Rep; 2019 Aug; 9(1):12486. PubMed ID: 31462670
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Under-Oil Switchable Superhydrophobicity to Superhydrophilicity Transition on TiO
    Kang H; Liu Y; Lai H; Yu X; Cheng Z; Jiang L
    ACS Nano; 2018 Feb; 12(2):1074-1082. PubMed ID: 29338192
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.