BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 27935655)

  • 1. Highly Flexible Multifunctional Biopaper Comprising Chitosan Reinforced by Ultralong Hydroxyapatite Nanowires.
    Sun TW; Zhu YJ; Chen F
    Chemistry; 2017 Mar; 23(16):3850-3862. PubMed ID: 27935655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultralong Hydroxyapatite Nanowire/Collagen Biopaper with High Flexibility, Improved Mechanical Properties and Excellent Cellular Attachment.
    Sun TW; Zhu YJ; Chen F; Zhang YG
    Chem Asian J; 2017 Mar; 12(6):655-664. PubMed ID: 28133927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porous Nanocomposite Comprising Ultralong Hydroxyapatite Nanowires Decorated with Zinc-Containing Nanoparticles and Chitosan: Synthesis and Application in Bone Defect Repair.
    Sun TW; Yu WL; Zhu YJ; Chen F; Zhang YG; Jiang YY; He YH
    Chemistry; 2018 Jun; 24(35):8809-8821. PubMed ID: 29655312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformable Biomaterials Based on Ultralong Hydroxyapatite Nanowires.
    Zhu YJ; Lu BQ
    ACS Biomater Sci Eng; 2019 Oct; 5(10):4951-4961. PubMed ID: 33455242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxyapatite nanowire/collagen elastic porous nanocomposite and its enhanced performance in bone defect repair.
    Sun TW; Zhu YJ; Chen F
    RSC Adv; 2018 Jul; 8(46):26218-26229. PubMed ID: 35541968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinspired Macroscopic Ribbon Fibers with a Nacre-Mimetic Architecture Based on Highly Ordered Alignment of Ultralong Hydroxyapatite Nanowires.
    Yang RL; Zhu YJ; Chen FF; Qin DD; Xiong ZC
    ACS Nano; 2018 Dec; 12(12):12284-12295. PubMed ID: 30475582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave-Assisted Hydrothermal Rapid Synthesis of Ultralong Hydroxyapatite Nanowires Using Adenosine 5'-Triphosphate.
    Zhang Y; Zhu YJ; Yu HP
    Molecules; 2022 Aug; 27(15):. PubMed ID: 35956970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2D titanium carbide(MXene) nanosheets and 1D hydroxyapatite nanowires into free standing nanocomposite membrane: in vitro and in vivo evaluations for bone regeneration.
    Fu Y; Zhang J; Lin H; Mo A
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111367. PubMed ID: 33254986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-Scale Automated Production of Highly Ordered Ultralong Hydroxyapatite Nanowires and Construction of Various Fire-Resistant Flexible Ordered Architectures.
    Chen F; Zhu YJ
    ACS Nano; 2016 Dec; 10(12):11483-11495. PubMed ID: 28024360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanics, degradability, bioactivity, in vitro, and in vivo biocompatibility evaluation of poly(amino acid)/hydroxyapatite/calcium sulfate composite for potential load-bearing bone repair.
    Fan X; Ren H; Luo X; Wang P; Lv G; Yuan H; Li H; Yan Y
    J Biomater Appl; 2016 Mar; 30(8):1261-72. PubMed ID: 26635202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new kind of nanocomposite Xuan paper comprising ultralong hydroxyapatite nanowires and cellulose fibers with a unique ink wetting performance.
    Shao YT; Zhu YJ; Dong LY; Zhang QQ
    RSC Adv; 2019 Dec; 9(69):40750-40757. PubMed ID: 35542675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel chitosan-tussah silk fibroin/nano-hydroxyapatite composite bone scaffold platform with tunable mechanical strength in a wide range.
    Ran J; Hu J; Sun G; Chen S; Jiang P; Shen X; Tong H
    Int J Biol Macromol; 2016 Dec; 93(Pt A):87-97. PubMed ID: 27568361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and properties of a novel bone repair composite: nano-hydroxyapatite/chitosan/carboxymethyl cellulose.
    Liuyun J; Yubao L; Li Z; Jianguo L
    J Mater Sci Mater Med; 2008 Mar; 19(3):981-7. PubMed ID: 17665104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Induction of Porous Graphene from Mechanically Strong and Waterproof Biopaper for On-Chip Multifunctional Flexible Electronics.
    Zhao N; Zhang H; Yang S; Sun Y; Zhao G; Fan W; Yan Z; Lin J; Wan C
    Small; 2023 Oct; 19(43):e2300242. PubMed ID: 37381614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave-assisted synthesis of porous chitosan-modified montmorillonite-hydroxyapatite composite scaffolds.
    Kar S; Kaur T; Thirugnanam A
    Int J Biol Macromol; 2016 Jan; 82():628-36. PubMed ID: 26505953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteoblast biocompatibility of premineralized, hexamethylene-1,6-diaminocarboxysulfonate crosslinked chitosan fibers.
    Kiechel MA; Beringer LT; Donius AE; Komiya Y; Habas R; Wegst UG; Schauer CL
    J Biomed Mater Res A; 2015 Oct; 103(10):3201-11. PubMed ID: 25771925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wet End Chemical Properties of a New Kind of Fire-Resistant Paper Pulp Based on Ultralong Hydroxyapatite Nanowires.
    Dong LY; Zhu YJ; Wu J
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel composite scaffold comprising ultralong hydroxyapatite microtubes and chitosan: preparation and application in drug delivery.
    Zhang YG; Zhu YJ; Chen F; Sun TW
    J Mater Chem B; 2017 Jun; 5(21):3898-3906. PubMed ID: 32264251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and properties of three-dimensional hydroxyapatite/chitosan nanocomposite rods.
    Wang Z; Hu Q
    Biomed Mater; 2010 Aug; 5(4):045007. PubMed ID: 20603528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering.
    Kim HL; Jung GY; Yoon JH; Han JS; Park YJ; Kim DG; Zhang M; Kim DJ
    Mater Sci Eng C Mater Biol Appl; 2015 Sep; 54():20-5. PubMed ID: 26046263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.