These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 27935699)

  • 1. New Particle Formation from Methanesulfonic Acid and Amines/Ammonia as a Function of Temperature.
    Chen H; Finlayson-Pitts BJ
    Environ Sci Technol; 2017 Jan; 51(1):243-252. PubMed ID: 27935699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactions of Methanesulfonic Acid with Amines and Ammonia as a Source of New Particles in Air.
    Chen H; Varner ME; Gerber RB; Finlayson-Pitts BJ
    J Phys Chem B; 2016 Mar; 120(8):1526-36. PubMed ID: 26379061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particle formation and growth from oxalic acid, methanesulfonic acid, trimethylamine and water: a combined experimental and theoretical study.
    Arquero KD; Xu J; Gerber RB; Finlayson-Pitts BJ
    Phys Chem Chem Phys; 2017 Oct; 19(41):28286-28301. PubMed ID: 29028063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated experimental and theoretical approach to probe the synergistic effect of ammonia in methanesulfonic acid reactions with small alkylamines.
    Perraud V; Xu J; Gerber RB; Finlayson-Pitts BJ
    Environ Sci Process Impacts; 2020 Feb; 22(2):305-328. PubMed ID: 31904037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of Oxalic Acid in New Particle Formation from Methanesulfonic Acid, Methylamine, and Water.
    Arquero KD; Gerber RB; Finlayson-Pitts BJ
    Environ Sci Technol; 2017 Feb; 51(4):2124-2130. PubMed ID: 28117992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Effects of Amines in Enhancing Methanesulfonic Acid-Driven New Particle Formation.
    Shen J; Elm J; Xie HB; Chen J; Niu J; Vehkamäki H
    Environ Sci Technol; 2020 Nov; 54(21):13498-13508. PubMed ID: 33091300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clusteromics II: Methanesulfonic Acid-Base Cluster Formation.
    Elm J
    ACS Omega; 2021 Jul; 6(26):17035-17044. PubMed ID: 34250361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Methanesulfonic Acid in Sulfuric Acid-Amine and Ammonia New Particle Formation.
    Johnson JS; Jen CN
    ACS Earth Space Chem; 2023 Mar; 7(3):653-660. PubMed ID: 36960424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticles grown from methanesulfonic acid and methylamine: microscopic structures and formation mechanism.
    Xu J; Finlayson-Pitts BJ; Gerber RB
    Phys Chem Chem Phys; 2017 Dec; 19(47):31949-31957. PubMed ID: 29177355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clusteromics III: Acid Synergy in Sulfuric Acid-Methanesulfonic Acid-Base Cluster Formation.
    Elm J
    ACS Omega; 2022 May; 7(17):15206-15214. PubMed ID: 35572753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uptake of water by an acid-base nanoparticle: theoretical and experimental studies of the methanesulfonic acid-methylamine system.
    Xu J; Perraud V; Finlayson-Pitts BJ; Gerber RB
    Phys Chem Chem Phys; 2018 Aug; 20(34):22249-22259. PubMed ID: 30123899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton Transfer in Mixed Clusters of Methanesulfonic Acid, Methylamine, and Oxalic Acid: Implications for Atmospheric Particle Formation.
    Xu J; Finlayson-Pitts BJ; Gerber RB
    J Phys Chem A; 2017 Mar; 121(12):2377-2385. PubMed ID: 28287734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gas-phase reactions of OH with methyl amines in the presence or absence of molecular oxygen. An experimental and theoretical study.
    Onel L; Thonger L; Blitz MA; Seakins PW; Bunkan AJ; Solimannejad M; Nielsen CJ
    J Phys Chem A; 2013 Oct; 117(41):10736-45. PubMed ID: 24059646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infrared studies of the reaction of methanesulfonic acid with trimethylamine on surfaces.
    Nishino N; Arquero KD; Dawson ML; Finlayson-Pitts BJ
    Environ Sci Technol; 2014; 48(1):323-30. PubMed ID: 24304088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of atmospheric conditions on sulfuric acid-dimethylamine-ammonia-based new particle formation.
    Li H; Ning A; Zhong J; Zhang H; Liu L; Zhang Y; Zhang X; Zeng XC; He H
    Chemosphere; 2020 Apr; 245():125554. PubMed ID: 31874321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic effect of glutaric acid and ammonia/amine/amide on their hydrates in the clustering: A theoretical study.
    Ni S; Bai F; Pan X
    Chemosphere; 2021 Jul; 275():130063. PubMed ID: 33984898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simplified mechanism for new particle formation from methanesulfonic acid, amines, and water via experiments and ab initio calculations.
    Dawson ML; Varner ME; Perraud V; Ezell MJ; Gerber RB; Finlayson-Pitts BJ
    Proc Natl Acad Sci U S A; 2012 Nov; 109(46):18719-24. PubMed ID: 23090988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydration of the methanesulfonate-ammonia/amine complex and its atmospheric implications.
    Miao SK; Jiang S; Peng XQ; Liu YR; Feng YJ; Wang YB; Zhao F; Huang T; Huang W
    RSC Adv; 2018 Jan; 8(6):3250-3263. PubMed ID: 35541186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clusteromics IV: The Role of Nitric Acid in Atmospheric Cluster Formation.
    Knattrup Y; Elm J
    ACS Omega; 2022 Sep; 7(35):31551-31560. PubMed ID: 36092558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atmospheric implications of hydration on the formation of methanesulfonic acid and methylamine clusters: A theoretical study.
    Chen D; Li D; Wang C; Luo Y; Liu F; Wang W
    Chemosphere; 2020 Apr; 244():125538. PubMed ID: 31835047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.