These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 27935846)
41. Dimethylglycine provides salt and temperature stress protection to Bacillus subtilis. Bashir A; Hoffmann T; Smits SH; Bremer E Appl Environ Microbiol; 2014 May; 80(9):2773-85. PubMed ID: 24561588 [TBL] [Abstract][Full Text] [Related]
42. The Bacillus subtilis EfeUOB transporter is essential for high-affinity acquisition of ferrous and ferric iron. Miethke M; Monteferrante CG; Marahiel MA; van Dijl JM Biochim Biophys Acta; 2013 Oct; 1833(10):2267-78. PubMed ID: 23764491 [TBL] [Abstract][Full Text] [Related]
44. Effect of ultraviolet A exposure on transport of compatible organic osmolytes in human lens epithelial cells. Wu DY; Zhang JS Genet Mol Res; 2015 May; 14(2):5132-40. PubMed ID: 26125706 [TBL] [Abstract][Full Text] [Related]
45. Toward a biophysical understanding of the salt stress response of individual plant cells. Foster KJ; Miklavcic SJ J Theor Biol; 2015 Nov; 385():130-42. PubMed ID: 26362103 [TBL] [Abstract][Full Text] [Related]
46. Growth, osmotic downshock resistance and differentiation of Bacillus subtilis strains lacking mechanosensitive channels. Wahome PG; Setlow P Arch Microbiol; 2008 Jan; 189(1):49-58. PubMed ID: 17665170 [TBL] [Abstract][Full Text] [Related]
47. Chill activation of compatible solute transporters in Corynebacterium glutamicum at the level of transport activity. Ozcan N; Krämer R; Morbach S J Bacteriol; 2005 Jul; 187(14):4752-9. PubMed ID: 15995189 [TBL] [Abstract][Full Text] [Related]
48. The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis. Whatmore AM; Chudek JA; Reed RH J Gen Microbiol; 1990 Dec; 136(12):2527-35. PubMed ID: 2127802 [TBL] [Abstract][Full Text] [Related]
49. EctD-mediated biotransformation of the chemical chaperone ectoine into hydroxyectoine and its mechanosensitive channel-independent excretion. Czech L; Stöveken N; Bremer E Microb Cell Fact; 2016 Jul; 15(1):126. PubMed ID: 27439307 [TBL] [Abstract][Full Text] [Related]
50. Stress-induced activation of the proline biosynthetic pathway in Bacillus subtilis: a population-wide and single-cell study of the osmotically controlled proHJ promoter. Morawska LP; Detert Oude Weme RGJ; Frenzel E; Dirkzwager M; Hoffmann T; Bremer E; Kuipers OP Microb Biotechnol; 2022 Sep; 15(9):2411-2425. PubMed ID: 35593133 [TBL] [Abstract][Full Text] [Related]
51. Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Zhang H; Murzello C; Sun Y; Kim MS; Xie X; Jeter RM; Zak JC; Dowd SE; Paré PW Mol Plant Microbe Interact; 2010 Aug; 23(8):1097-104. PubMed ID: 20615119 [TBL] [Abstract][Full Text] [Related]
52. Metal ion homeostasis in Bacillus subtilis. Moore CM; Helmann JD Curr Opin Microbiol; 2005 Apr; 8(2):188-95. PubMed ID: 15802251 [TBL] [Abstract][Full Text] [Related]
53. Structure and function of the betaine uptake system BetP of Corynebacterium glutamicum: strategies to sense osmotic and chill stress. Morbach S; Krämer R J Mol Microbiol Biotechnol; 2005; 10(2-4):143-53. PubMed ID: 16645311 [TBL] [Abstract][Full Text] [Related]
54. Marinococcus halophilus DSM 20408T encodes two transporters for compatible solutes belonging to the betaine-carnitine-choline transporter family: identification and characterization of ectoine transporter EctM and glycine betaine transporter BetM. Vermeulen V; Kunte HJ Extremophiles; 2004 Jun; 8(3):175-84. PubMed ID: 14872322 [TBL] [Abstract][Full Text] [Related]
55. Role of branched-chain amino acid transport in Bacillus subtilis CodY activity. Belitsky BR J Bacteriol; 2015 Apr; 197(8):1330-8. PubMed ID: 25645558 [TBL] [Abstract][Full Text] [Related]
56. Two MarR-Type Repressors Balance Precursor Uptake and Glycine Betaine Synthesis in Warmbold B; Ronzheimer S; Freibert SA; Seubert A; Hoffmann T; Bremer E Front Microbiol; 2020; 11():1700. PubMed ID: 32849357 [No Abstract] [Full Text] [Related]
57. A comprehensive genomic, transcriptomic and proteomic analysis of a hyperosmotic stress sensitive α-proteobacterium. Kohler C; Lourenço RF; Bernhardt J; Albrecht D; Schüler J; Hecker M; Gomes SL BMC Microbiol; 2015 Mar; 15():71. PubMed ID: 25879753 [TBL] [Abstract][Full Text] [Related]
58. Characterization of the osmoprotectant transporter OpuC from Pseudomonas syringae and demonstration that cystathionine-beta-synthase domains are required for its osmoregulatory function. Chen C; Beattie GA J Bacteriol; 2007 Oct; 189(19):6901-12. PubMed ID: 17660277 [TBL] [Abstract][Full Text] [Related]
59. Enteric bacteria and osmotic stress: intracellular potassium glutamate as a secondary signal of osmotic stress? Booth IR; Higgins CF FEMS Microbiol Rev; 1990 Jun; 6(2-3):239-46. PubMed ID: 1974769 [TBL] [Abstract][Full Text] [Related]
60. Levels and localization of mechanosensitive channel proteins in Bacillus subtilis. Wahome PG; Cowan AE; Setlow B; Setlow P Arch Microbiol; 2009 May; 191(5):403-14. PubMed ID: 19252899 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]